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ABSTRACT: We present the dynamics of the composition fluctuations and pattern
formation of two-component systems in both single-phase and two-phase states as
studied by time-resolved small-angle neutron scattering and light scattering. Two-
component systems to be covered here include not only dynamically symmetric systems,
in which each component has nearly identical self-diffusion coefficients, but also dy-
namically asymmetric systems, in which each component has different self-diffusion
coefficients. We compare the dynamic behaviors of the two systems and illuminate their
important differences. The scattering studies presented for dynamically asymmetric
systems highlight that stress–diffusion coupling and viscoelastic effects strongly affect
the dynamics and pattern formation. For dynamically symmetric systems, we examine
the universality existing in both polymer systems and small-molecule systems as well
as new features concerning the time evolution of hierarchical structures during phase
separation via spinodal decomposition over a wide range of wave numbers (up to four
orders of magnitude). For both systems, we emphasize that polymers provide good
model systems for studying the dynamics and pattern formation. © 2004 Wiley Periodi-
cals, Inc. J Polym Sci Part B: Polym Phys 42: 3027–3062, 2004
Keywords: binary mixtures; blends; light scattering; pattern formation; phase sep-
aration; self-organization; small-angle neutron scattering; spinodal decomposition;
stress–diffusion coupling

INTRODUCTION

We present here scattering studies of the time evo-
lution of phase-separating structures via spinodal
decomposition (SD) and the dynamics of composi-
tion fluctuations in single-phase mixtures for bi-
nary molecular mixtures as one of the important
research topics concerning the space–time organi-

zation of molecules or supramolecules in soft matter
(or complex liquids). Time-resolved small-angle
neutron scattering (SANS), combined with time-
resolved light scattering (LS), is used to explore the
time evolution of hierarchical structures over a wide
wave-number (q) scale ranging from approximately
10�3 to approximately 100 nm�1 (corresponding to a
length scale of approximately micrometers to nano-
meters). Thus, this article concerns a nonequilib-
rium self-assembling process of molecular systems,
which involves nonlinear time-evolution equations.

What kind of hierarchical structures are of con-
cern here? Figure 1 schematically presents a typ-
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ical real-space structure developed at a particular
time in a late stage of the SD process for a binary
mixture consisting of molecules A and B with
nearly equal molecular sizes and with composi-
tions of nearly equal volume fractions. The struc-
ture has been elucidated by a series of works to be
presented in this article. The mixture has a two-
phase structure of domains rich in A (dark region)
and rich in B (bright region), which are cocontinu-
ous in three-dimensional (3D) space and periodic
with a characteristic length �m [Fig. 1(a)]. A
global structure (global) can be observed at r
� �m, r being the length scale of observation. If
we focus on the structure by reducing r, so that tI
is less than Rm, we can see the interface with a
mean radius of curvature Rm and an interfacial
area per unit of volume (interfacial area density)
�, tI being a characteristic interfacial thickness
[Fig. 1(c)]. In this scale, both the A-rich phase
(phase 1) and the B-rich phase (phase 2) appear to
have a uniform composition of A and B, which is
equal to the equilibrium composition of �A1

e and
�B1

e or that of �A2
e and �B2

e , predicted by the
coexistence curve of the mixture and phase-sepa-
ration temperature in a phase diagram (shown
later in Fig. 4), in which K and J in �KJ

e designate
the Kth component (K � A or B) in the Jth phase
(J � 1 or 2) and superscript e designates equilib-
rium. If we further zoom in the structure so that
r is less than tI, we see the interfacial region of
finite thickness tI (Interphase), in which the av-
erage local composition of the A molecule changes
between �A1

e and �A2
e , and the local composition of

the A molecule located at r in the A-rich phase,
�A1(r), and in the B-rich phase, �A2(r), thermally

fluctuate around �A1
e and �A2

e , respectively, with
thermal correlation length �T (Local), as shown in
Figure 1(c). In the weak segregation limit, as dis-
cussed later, tI can be larger than the molecular
size [radius of gyration (Rg) of polymers A and B],
even for polymer systems, as is usually the case in
small-molecule systems.

The scattering studies reveal the space–time
organization of these hierarchical structures in
Fourier (reciprocal) space, as illuminated in Fig-
ure 6 later, and that of various characteristic
lengths, such as �m, Rm, ��1, tI, �T, and Rg. In this
article, we present both polymer mixtures and
small-molecule mixtures. Before going into de-
tailed discussions, we summarize the universal
features of the two systems and the unique fea-
tures or merits of polymer systems with respect to
nonequilibrium dynamics and pattern formation.

MERITS OF POLYMER SYSTEMS FOR
STUDYING DYNAMICS AND PATTERN
FORMATION

For simplicity, we consider molecules A and B to
be equal in size and equal in self-diffusivity (Dc),
having static and dynamic symmetry, respec-
tively. The molecules themselves have their own
temperature-dependent characteristic length (�0)
and characteristic time (t0). The space-time scale
of binary mixtures (�c) and tc, which characterize
the characteristic length and time of thermal
composition fluctuations, is related to that of mol-
ecules in terms of the following scaling laws, as is
well known in the field of critical phenomena:1

�c � �0�T
�� (1)

tc � t0�T
�� (2)

where

�T � �� � �c�/�c

�T � �T for T close to Tc, �T � 1 for �T��0

(3)

and

�T � �T � Tc� (4)

Figure 1. Schematic representation of the hierarchi-
cal structures developed from binary mixtures of A and
B molecules in a phase-separation process of the late
stage of SD: (a) global, (b) asymptotic (or interface), and
(c) interphase and local scales. The two components
have dynamic symmetry, as described in the text, and
equal volume fractions.

3028 HASHIMOTO



� and � are critical exponents, equal to 1/2 and 2,
respectively, for the mean-field approximation. �
is a thermodynamic interaction parameter be-
tween A and B small molecules or monomeric
units of polymers,2 and �c is the � parameter at a
critical temperature (Tc). As our mixtures ap-
proach Tc either in a single-phase region or a
two-phase region in the phase diagram, tc and �c
become very large; the former and the latter are
called critical slowing down and critical diver-
gence, respectively (see Fig. 2). Thus, the space-
time scale of mixtures expands as �T approaches
0. Because of this unique feature in critical phe-
nomena, even for simple liquids, for which we
usually observe that small structures change very
rapidly, we anticipate that large structures
change very slowly near the critical point. This
fact has been facilitating experimental studies of
critical phenomena for simple-liquid mixtures.

A basic difference between polymer mixtures
and simple-liquid mixtures arises from the differ-
ence in the space-time scale of the molecules
themselves, �0 and t0. It can be estimated on the
basis of Gaussian statistics2 and reptation dy-
namics3,4 for polymer systems, with each compo-
nent having a degree of polymerization (DP) N
and a segment length a:

�0 � N1/2a (5)

t0 � 	1�N3/Ne�, 	1 � a2/D1 (6)

where polymer systems are assumed to be entan-
gled, N being larger than Ne, the average DP

between the nearest entanglement points along
given chains. Here the quantities a and 	1 corre-
spond to the space-time scale of small-molecule
systems, whereas D1 is the self-diffusion constant
of segments or small molecules. When N is 104

and Ne is 102, as may be found for typical polymer
systems,

�0 � 102a, t0 � 1010	1 (7)

Thus, the space-time scale of typical polymer sys-
tems is extremely large in comparison with that
of small-molecule systems, and this gives such an
important result that in polymer systems larger
structures evolve very slowly at a given �T, in
comparison with those of small-molecule systems.
This result facilitates quantitative and precise
experimental investigations of nonequilibrium
dynamics and processes for polymer systems.5

If we set our experimental conditions for
polymer systems such that the space-time scale
of our observation is much larger than that of
the polymer molecules themselves, we antici-
pate that the dynamics and processes of poly-
mer mixtures will be universal with those of
small-molecule mixtures, except for the extraor-
dinary expansion of the space-time scale in
polymers. If we set the space-time scale of ob-
servation to be comparable to or less than that
of the polymer molecules, we anticipate unique
features of polymers that cannot be expected for
small molecules. A good example is a q depen-
dence of the Onsager kinetic coefficient at r 

Rg or q �1/Rg, as elaborated by deGennes,6

Pincus,7 Binder,8 and Akcasu.9

DYNAMIC ASYMMETRY AND
STRESS–DIFFUSION COUPLING:
THEORETICAL BACKGROUND

In this article we deal with both dynamically sym-
metric and asymmetric mixtures. The former
mixtures were briefly discussed in the previous
section. Most small-molecule mixtures have dy-
namic symmetry, and so the nonequilibrium dy-
namics and processes for this family have been
relatively well explored in comparison with those
of the other family with dynamic asymmetry. In
the former case, we can discuss universality in
the phase-separation behavior of polymer mix-
tures and small-molecule mixtures.10,11 The poly-
mer mixtures can be good model systems that

Figure 2. Schematic phase diagram of symmetric
A/B mixtures and the definition of �T and Tc. The
spatiotemporal scale of the mixtures expands as T
changes along the direction of the arrows pointing to-
ward Tc.
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enable us to pursue experimental studies of the
nonequilibrium dynamics and processes to a level
that cannot be easily attained with small-mole-
cule mixtures.5

In dynamically asymmetric mixtures, the com-
ponent molecules have different mobility (self-
diffusivity) values, as for mixtures of polymers
with different molecular weights or dispersions of
colloidal particles in a solvent, although colloids
themselves are not molecules but can be consid-
ered supramolecules. In this case, phase-separa-
tion dynamics and processes involve a new prob-
lem, stress–diffusion coupling,12–14 which is not
encountered in dynamically symmetric mixtures.
Because of this effect, the phase-separation dy-
namics and processes,15–18 as well as the dynam-
ics of composition fluctuations, in single-phase
systems19 are affected by viscoelastic relaxation
and involve a new characteristic length scale of
the so-called viscoelastic length (�ve), as elabo-
rated by Doi and Onuki.12,13

A good example showing this effect is a semi-
dilute polymer solution, that is, a binary mixture

of a high-molecular-weight polymer and a solvent,
as depicted in Figure 3.18 Suppose that concen-
tration fluctuations of a characteristic length r
are developed, as shown in Figure 3(b,c), from an
entangled polymer solution with a statistically
homogeneous polymer concentration with an av-
erage mesh size (�e) between the entanglement
couplings [Fig. 3(a)]. In Figure 3(b,c), the shaded
and unshaded areas represent regions with
higher and lower polymer concentrations with
smaller and larger mesh sizes (�es and �el, respec-
tively). If the growth rate of thermally activated
concentration fluctuations (	r) is faster than the
relaxation rate of the entangled polymer net-
works (	e), the concentration fluctuations will
build up local stress. Furthermore, the built-up
stress and its spatial variation will be relaxed at
rate 	e, which is characterized by the viscoelastic
properties of the system. The local variation of the
stress field in the solution affects the free-energy
functional mathematical terminology of the sys-
tem and hence the diffusion processes of the sys-
tem.

Figure 3. Schematic representation of stress–diffusion coupling and viscoelastic
effects in polymer solutions. The lines and circles in parts a and b represent polymer
chains and solvents, respectively. Part a represents semidilute solutions with relatively
homogeneous polymer concentrations at r � �e, whereas parts b and c represent those
with concentration fluctuations at a short length scale and at a larger length scale,
respectively. In parts b and c, the shaded regions designate polymer-rich regions (�es


 �e), whereas the unshaded regions designate polymer-poor regions (�el � �e). Parts b
and c differ in r for the concentration fluctuations. In part c, the solvents are not shown.
Based on ref. 18.
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Thus, stress–diffusion coupling occurs when 	r
is greater than 	e, and the coupling suppresses
the dynamics of concentration fluctuations. If
length r is comparable to �e [Fig. 1(b)], this crite-
rion for the stress–diffusion coupling should be
fulfilled. However, for large length-scale concen-
tration fluctuations with r � �e, as shown in Fig-
ure 3(c), 	r is extremely small, and such fluctua-
tions will be developed under a situation in which
the built-up stress is completely relaxed as a re-
sult of large-scale rearrangements of entangle-
ment couplings via disentanglement processes;
this results in the formation of entangled regions
with �es in polymer-rich regions and �el in poly-
mer-poor regions [Fig. 3(c)]. Hence, this case
would not involve such stress–diffusion coupling.

We can envision a screening length (�ve) for the
stress–diffusion coupling: if r is greater than �ve,
the coupling is screened out, but if r is less than
�ve, the coupling is important and is expected to
become increasingly important with decreasing r
because 	r is approximately r�2 and local stress
buildup and its inhomogeneity increase with de-
creasing r. Thus, the coupling would affect the
transport property of the system, the Onsager
kinetic coefficient [�(q)]. At large q values (satis-
fying q�ve � 1), this causes a suppression of �(q)
according to �(q) � q�2, as discussed later.
q(�r�1) is the wave number of a Fourier mode of
the concentration fluctuations, whose intensity
[I(q)] is detected by scattering experiments at a
particular magnitude of the scattering vector (q):

q � �4/��sin��/2� (8)

where � and � are the wavelength of the incident
beam and the scattering angle in the solutions,
respectively.

It is striking, though quite natural, to recog-
nize that phase separation couples with viscoelas-
tic relaxation and hence the viscoelastic proper-
ties of the system. The research along this line is
fascinating, as it involves various fundamental
problems in physical science, such as (1) the
nonequilibrium statistical mechanics of phase
transitions and structure formation in thermody-
namically unstable and metastable systems, (2)
rheology, (3) scattering and structural character-
ization, and (4) the polymer physics of asymmet-
ric mixtures and semidilute polymer solutions.

Doi and Onuki12–14 formulated a time-evolu-
tion equation for composition fluctuations for dy-
namically asymmetric systems:

�

�t ���r, t� � ��� � ��
�F
��

� �a� � �̈�r, t��
� ��r, t� � �hydrodynamic term� (9)

where ��(r,t)  �(r,t) � �0 represents fluctua-
tions of local composition �(r,t) of a component
(e.g., A) in mixtures at a local position r and time
t from its average value �0. F � F{��} is the
free-energy functional of ��(r,t), and �F/�� is the
variational derivative of F with respect to ��(r,t).
�a is the so-called dynamic asymmetry parameter
defined by

�a � �DANA � DBNB�/�DANA�B � DBNB�A� (10)

where DK, NK, and �K are the self-diffusivity, DP,
and volume fraction of the Kth component in mix-
tures (K � A or B). In eq 10, �a is equal to �A

�1 for
polymer solutions, �A being the volume fraction of
the polymer. 7�(r,t) is the local stress tensor, and
�(r,t) is the random thermal force expressed by
the following fluctuation–dissipation theorem:

���r, t���r�, t��� � �2kBT��2��r � r����t � t�� (11)

where kB and T are the Boltzmann constant and
absolute temperature, respectively, and �x� de-
notes thermal average of quantity x. Cahn,
Hilliard, and Cook20–22 and Ginzburg and
Landau23 originally introduced the first and third
terms on the right-hand side (rhs) of eq 9,
whereas Kawasaki and Ohta24 introduced the hy-
drodynamic term. Doi and Onuki12–14 further
generalized the equation by incorporating the
stress term associated with the dynamic asymme-
try and the stress–diffusion coupling (the second
term in rhs of eq 9).

If the systems to be considered are dynamically
symmetric, DANA is equal to DBNB, and hence �a
is equal to 0, the second term in rhs of eq 9
vanishes. Consequently the equation reduces to
the well-known Cahn–Hilliard–Cook (CHC)
equation or the time-dependent Ginzburg–
Landau (TDGL) equation. If ��(r,t) is small and
the hydrodynamic term can be neglected, eq 9 can
be linearized, and the linearized equation in q
space is given by12

�

�t ���q, t� � ��q�q2� �r0 � Cq2����q, t�

�
4
3 �a

2 �
0

t

dt�G�t � t��
�

�t� ���q, t��� � ��q, t� (12)
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The first term in rhs of eq 12 is obtained on the
basis of the Ginzburg–Landau (GL) expansion of
the free-energy functional. r0  �(�2f/��2)0 (f be-
ing the free-energy density of the mixture) is a
parameter related to thermodynamic driving
force for composition fluctuations, being positive
in a phase-separation condition, which therefore
tends to increase fluctuations, and negative for
mixtures in a single-phase state, which decays
thermally activated fluctuations (as discussed
later). C is a positive constant related to the gra-
dient free energy due to the nonlocality of inter-
actions.6,22,25 G(t) is the relaxation function of the
shear modulus:

G�t� � �
i�1

n

Giexp��t/	i� (13)

where Gi and 	i are the strength and relaxation
time for the ith relaxation process. �(q,t) is given
by

���q, t���q�, t���

� 2kBT��q�q2��t � t���2�3��q � q�� (14)

In eq 12, we assume that the systems to be con-
sidered are isotropic, and so q is replaced by q.

The second term in rhs of eq 12 represents the
stress built up by the increase in the composition
fluctuations, ���(q,t�)�t�. Because the integral is
always positive, the stress term tends to suppress
the growth rate of composition fluctuations or the
relaxation rate in single-phase mixtures, as we
naturally anticipate. Thus, interestingly enough,
the dynamics are affected by the stress–relax-
ation process and hence by the mechanical prop-
erties of the system. When the stress relaxes more
quickly than the composition fluctuations (this is
usually the case near the spinodal line), this in-
tegral is simplified so that the term ���(q,t�)�t� �
���(q,t)�t is put outside the integral. Under this
situation, we obtain

�

�t ���q, t� �
��q�

1 � �ve
2 q2

� q2�r0 � Cq2����q, t� � ��q, t� (15)

where �ve is defined by

�ve � �4
3 �a��0��0� 1/2

(16)

and �0 is the zero-shear viscosity given by

�0 � �
i�1

n

Gi	i (17)

� (0) in eq 16 is expressed by

��0� � �A�B�DANA�B � DBNB�A��0/kBT (18)

where v0 is defined by

�0 � ��A/�A � �B/�B��1 (19)

with vK (K � A or B) being the molar volume of
the Kth monomeric unit.

The viscoelastic effect gives a renormalization
effect with respect to the Onsager kinetic coeffi-
cient, giving rise to an effective suppression of
�(q). This suppression depends on a product of �ve
and q; the larger the value is, the larger the
suppression is. �ve is a unique and important
characteristic length of the system that depends
on the dynamic properties, most importantly on
the dynamic asymmetry parameter �a, but it also
depends on the zero-shear viscosity and the small
q limit of the Onsager coefficient. We later discuss
quantitatively the effects of the stress–diffusion
coupling and viscoelastic length on the dynamics
of the composition fluctuations and pattern for-
mation with a time-resolved SANS technique

The effects of dynamic asymmetry disappear
for q � 1/�ve or r � �ve or t � 	ve  �ve

2 /D [	ve and
D are the relaxation time for the viscoelastic ef-
fects (viscoelastic time) and the mutual diffusion
coefficient, respectively]. In other words, the dy-
namically asymmetric effects are insignificant in
the hydrodynamic regime of a large space-time
scale of observation.

TIME EVOLUTION OF SELF-ORGANIZED
STRUCTURES VIA SD IN DYNAMICALLY
SYMMETRIC SYSTEMS

Time Evolution of Hierarchical Structures in
Symmetric Polymer Mixtures

Systems to be Studied

Here we investigate a binary critical mixture of
amorphous polymers far above their glass-transi-
tion temperatures (Tg’s) so that the mixture is
liquidlike for the long time limit of concern here.

3032 HASHIMOTO



We study this system as a model system for dy-
namically symmetric systems. The mixture, com-
posed of deuterated polybutadiene (DPB) and pro-
tonated polyisoprene (HPI), has a lower critical
solution temperature (LCST) phase diagram,
whose theoretical coexistence curve is shown in
Figure 4.26 We quench the mixture at an equilib-
rium state I in a single-phase state to state I�
inside the spinodal phase boundary. The mixture
is thermodynamically unstable at I�, and so the
composition fluctuations grow with time via SD,20

generating domains rich in component A (DPB)
and domains rich in component B (HPI). The com-
position difference [�(�(t)] of component A be-
tween the two domains increases with time and
reaches an equilibrium value [��e] in the late
stage of SD; there, the size of the domains still
increases, and interfacial area keeps decreasing.
The equilibrium state (F) at the phase-separation
temperature (T) is composed of two macrophases,
1 and 2, with �A equal to �A1

e and �A2
e .

We are interested in studying the self-assem-
bling process, mechanism, and dynamics involved
in this phase transition with a combined time-
resolved SANS and LS technique. The technique
enables us to study the space–time organization
of the structure over a wide length scale r from 1
nm to 10 �m (or over a wave-number scale q from
10�4 to 100 nm�1) and over a wide time scale from
1 to 104 min, covering the early to late stages of
SD.5 A basic time-evolution equation of the order
parameter ��(r,t) (space–time composition fluctu-

ations of one component) in our system is given by
a generalized TDGL equation for binary fluids,
which takes into account hydrodynamic effects.24

The system is nearly dynamically symmetric,
with a very small value for the asymmetry pa-
rameter (�a � 0.16).

We investigate the pattern formation in our
self-organizing system through time changes in
the elastic scattering intensity of neutrons and
light [I(q,t)], which corresponds to the intensity of
the Fourier mode of the fluctuations with q at
time t after the onset of SD. Experimentally, q is
varied through changes in the magnitude of q
through changes in � and/or �, as obviously shown
in eq 8. The experimental setup and conditions of
SANS and LS have been described in detail else-
where.26,27

The DPB sample has a weight-average DP of
Nw � 1.7 � 103 and a heterogeneity index (char-
acterizing the polydispersity in DP) of Nw/Nn
� 1.04, where Nn is the number-average DP. HPI
has values of Nw � 2.0 � 103 and Nw/Nn � 1.04.
We investigated a critical mixture of DPB and
HPI with a 47/53 (v/v) composition ratio. Here we
report our results at 40 °C. SANS studies in the
single-phase state have allowed us to determine
the following characteristics of the mixture.26,27

First, it has a spinodal temperature (Ts) of 36.1
°C, which is well above the Tg values of �95 °C for
DPB and �72 °C for HPI. Second, the mean-filed
Flory interaction parameter per monomer unit
(�eff) was evaluated as a function of T. Third, this
result gives the parameter �T, which character-
izes thermodynamic driving force for the phase
separation at the experimental temperature of T
� 40 °C:

�T � ��eff � �s�/�s � 0.0668 (20)

�T � 1 indicates that our system is in a weak
segregation limit. This situation is also confirmed
later by a large value of tI:

tI � 7Rg (21)

where Rg is the radius of gyration of DPB and
HPI. The value for each has been separately es-
timated to be approximately identical, 11.6 nm.
Fourth, �T has been estimated to be 25 nm. This
value is larger than Rg, reflecting again the weak
segregation limit. Fifth, �T is equal to 0.0668 �
1/N (�5 � 10�4), and so the system is far outside
the critical region, as specified by the Ginzburg

Figure 4. Coexistence curve, for a DPB/HPI mixture,
calculated on the basis of the Flory–Huggins theory2.
Component A is DPB. The data are based on ref. 26.
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criterion.3,8 Thus, the evolution of �(r,t) and I(q,t)
should follow the mean-field behavior.

Time Evolution of Scattering over a Wide q Range

Figure 5 shows double-logarithmically the abso-
lute scattering intensity profile I(q,t) (cm�1) as a
function of q at various times after the onset of
SD.26,27 The absolute SANS intensity has been
obtained according to a standard method. The
absolute LS intensity has been obtained accord-
ing to a special method that is discussed later in
conjunction with Figure 6. Some of the data at q
� 10�2 nm�1 have been obtained by LS, and the

data at 2 � 10�2 � q � 7 � 10�1 nm�1 have been
obtained with both 30- and 8-m SANS instru-
ments at NIST (National Institute of Standards
and Technology). The three sets of data cover a
wide q range of about four orders of magnitude.
There is still a small gap in the q range (1 � 10�2

to 2 � 10�2 nm�1) that cannot be covered by our
method. We request that our readers look at the
LS profiles and the 30-m SANS profiles across the
gap as follows. The 30-m SANS profiles at 101.8
and 197.9 min should be smoothly connected to
the LS profiles at 103.5 and 199.3 min, respec-
tively; the 30-m SANS profile at 1002.1 min

Figure 5. Time-resolved LS (3 � 10�4 nm�1 
 q 
 10�2 nm�1) and SANS profiles (2
� 10�2 nm�1 
 q 
 7 � 10�1 nm�1) after the onset of SD at 40 °C for a DPB/HPI
mixture (see Fig. 4 for its phase diagram). The upper half of the figure (shown on the
dark gray background) presents the scattering profiles from 296.2 to 5742.9 min for LS
profiles, from 301.6 to 1304.2 min for 30-m SANS profiles, and from 302.9 to 439.0 min
for 8-m SANS profiles. These scattering curves present the absolute scattered intensity
I(q,t) from 100 and 1010 cm�1. The lower half of the figure (shown on the bright gray
background) presents the scattering profiles from 103.5 to 199.3 min for LS profiles,
from 1.6 to 197.9 min for 30-m SANS profiles, and from 1.8 to 203.3 min for 8-m SANS
profiles. These scattering curves present the absolute scattered intensity I(q,t) from 100

to 107 cm�1. The upper and lower halves of the figure indicate the profiles in the late
stage of SD and the early to intermediate stages of SD, respectively. The data are based
on ref. 26.

3034 HASHIMOTO



should be smoothly connected to the LS profile at
1002.3 min. The arrows show the wave numbers
corresponding to �T

�1 and Rg
�1. The lower half of

the figure, including the LS profiles at 103.5 and
199.3 min, the 30-m SANS profiles from 1.6 to
197.9 min, and the 8-m SANS profiles from 1.8 to
203.3 min, presents the time change in the pro-
files in the early to intermediate stages of SD,
whereas the upper half presents the profiles in
the late stage. The LS profiles could not be de-
tected at a time scale shorter than 103.5 min,
simply because the LS intensities were weaker
than the background noise level of our experi-
ment setup. We might imagine that the LS profile
at 1.6 min is close to the intensity level of
Ithermal,e(q) at 23 °C (shown by the solid line) and
that those at 11.3 and 24.2 are close to the inten-
sity level between Ithermal,e(q) at 23 °C and that at
40 °C (broken line), as will be discussed later. The
time scale covered is about four orders of magni-
tude after the onset of SD, and the intensity scale
extends over nine orders of magnitude.

We first focus our attention on the early to
intermediate stages of SD. After the onset of SD,
a scattering maximum appears at the peak scat-
tering vector, qm � 2 � 10�2 nm�1, in the q range
covered by the 30-m SANS instrument. The max-
imum intensity increases with time without a
significant change in qm up to about 10 min, and

then qm rapidly shifts toward smaller q values,
disappears in the q gap, and appears again at the
higher q limit covered by LS (see the two profiles
at 103.5 and 199.3 min and Fig. 7). The solid
curve shows the equilibrium scattering in the sin-
gle-phase state at 23 °C measured before the tem-
perature quench, with the 30- and 8-m SANS
apparatus down to the lower q limit of the 30-m
instrument. The solid line below this q limit was
estimated by a best fitting of the scattering func-
tion based on the RPA (random phase approxima-
tion) theory3,28 to the experimental SANS pro-
file.29 The scattered intensity at q � 1/Rg de-
creases with time after the onset of SD at 40 °C,
reaching an equilibrium value in the late stage at
about 250 min, as will be detailed later. This
equilibrium scattering, designated Ithermal,e(q)
and shown by a broken line, corresponds to com-
position fluctuations from phase-separated do-
mains with the equilibrium composition of com-
ponent A equal to �A1

e and �A2
e . The intensity in

the q range lower than 10�1 nm�1 � Rg
�1 in-

creases, but the intensity in the q range higher
than Rg

�1 decreases with time, and this results in
the least change in the intensity in q centered at
Rg

�1. The change in the equilibrium scattering
profile obviously reflects that in the equilibrium
state of the mixtures.

Figure 6. LS and SANS profile at t � 1381.7 min (corresponding to 	 � 30) in the late
stage of SD, which covers various q regimes: global, asymptotic (or interface), inter-
phase, and local. The sample was the same one used for Figures 4 and 5. The data are
based on ref. 26.
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Next we discuss the time change of the profile
in the late stage (see the upper part of Fig. 5). The
scattering at high q values, as shown by SANS,
does not change much with time, as highlighted
by the hatched region in the figure, almost reach-
ing an equilibrium state. There is a very small
decrease in the intensity at q � �T

�1 (4 � 10�2

nm�1) but no change at q � �T
�1. This important

feature has been elucidated for the first time in
this work. Here the small decrease in the inten-
sity reflects a decrease in the interfacial area
density with time, as will be discussed later. On
the contrary, the scattering at small q values, as
shown by LS, still changes with time. The time-
independent part of the profile in �T

�1 � q � Rg
�1

has an excess intensity (as highlighted by hatch-
ing) with respect to that from the equilibrium
intensity [Ithermal,e(q)] at 40 °C (broken line). This
is also a very important result, which has never
been elucidated in earlier reports. We shall dis-
cuss this scattering later.

Hierarchical Structure

Figure 6 highlights the scattering profile at a
particular time in the late stage (at t � 1381.7
min). The intensity in the q gap was interpo-
lated by a broken line.26 Because the SANS
intensity profile has been calibrated into the
absolute intensity according to a standard

method, the interpolation can convert the rela-
tive corrected LS intensity into the absolute
intensity. We propose here that the profile can
be classified into four regimes: (1) a global re-
gime (q 
 4.5 � 10�3 nm�1), (2) an asymptotic
(or interface) regime (4.5 � 10�3 
 q 
 2 � 10�2

nm�1), (3) an interphase regime (2 � 10�2 
 q

 1 � 10�1 nm�1) and (4) a local regime (1
� 10�1 
 q 
 7 � 10�1 nm�1). The four regimes
correspond to those discussed previously in con-
junction with Figure 1. As elucidated later, the
q range for each regime is generally time-
dependent; for example, the global regime shifts
toward smaller q values with time, but the local
regime is time-independent. The asymptotic
and interphase regimes appear in the late
stage. The former shifts toward smaller q val-
ues with time, and this appears to expand the q
range for the interphase regime. We later dis-
cuss the time evolution of the structures in each
regime.

The time change in the scattering function over
the very wide q and t scales shown in Figures 5
and 6 reveals one important conclusion concern-
ing the space–time organization of the structures
in our system: the structure with a shorter char-
acteristic length r or a higher wave number q
relaxes toward equilibrium faster than that hav-
ing a longer r or lower q (conclusion 1). This

Figure 7. Time changes in qm(t) and Im(t) in a double-logarithmic scale. The sample
was the same one used for Figures 4–6. The data are based on ref. 26.
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conclusion seems to be reasonable and universal
because Fourier modes of the structures having a
higher q value have a higher gradient free energy
[(ƒ�)2 � q2] and hence relax more quickly toward
a new equilibrium at the phase-separation tem-
perature. For our particular system, the struc-
tures shown by SANS (with q � 2 � 102 nm�1)
essentially reach equilibrium in the late stage of
SD.

Global Regime

Space–Time Organization of the Global Structure

Scattering function I(q) for systems with �m gen-
erally depends on mean-squared fluctuations of
scattering power ��2� and characteristic volume
�m

3 , both of which affect the absolute scattering
intensity, and shape factor F(q), which affects the
intensity distribution of scattering with respect to
q. ��2� is related to fluctuations of the refractive
index for LS, the scattering length for SANS, and
the electron density for small-angle X-ray scatter-
ing (SAXS), which are commonly described in
terms of mean-squared composition fluctuations
(���2�). Therefore, the scattering function at par-
ticular time t is generally given by

I�q, t� � �const.�����t�2�qm�t��3F�x� (22a)

On the basis of eq 22a, we can define a scaled
structure factor30,31 that characterizes the shape
of the structure self-organized with time:

F�x� � I�q, t�qm�t�3, x � q/qm�t� (22b)

In eq 22a, we use the relationship between qm and
�m (�m � 2/qm).

The time evolution of the global structure can
be characterized by the time changes in the wave
number [qm(t)] and intensity [Im(t)] at the peak of
the SANS or LS scattering function [I(q,t)] and by
the time change in the shape of the scattering
profile with the peak centered at q � qm(t). If the
shape of the growing structure under consider-
ation is statistically identical and only its charac-
teristic length is changing with time t, F(x) be-
comes independent of t (dynamic self-similarity).
qm(t) is related to the characteristic length scale
[�m(t)] of the global structure [qm(t) � 2/�m(t)],
and Im is related to ���(t)2�, qm(t), and F(x � 1).

Figure 7 presents double-logarithmically the
time changes in qm(t) and Im(t) as observed by
SANS (at t � 10 min) and LS (at t � 100 min). 	

indicates the reduced time, that is, the real time t
renormalized by tc of the mixture (	  t/tc). qm(t)
decreases with t from about 2.5 � 10�2 nm�1,
being consistent with the value of 3.0 � 10�2

nm�1 predicted by the liberalized theory of SD by
Cahn, Hilliard, Cook, and deGennes6,20,21 (con-
clusion 2), to 5 � 10�4 nm�1 over the four orders
of magnitude of time covered in our experiment,
corresponding to the change in �m(t) from about
200 nm to 12 �m. Exponents � and � in the
power-law analyses

qm�t� � t��, Im�t� � t�� (23)

change with t (e.g., from � � 0 in the early stage
to 0.212–1/3 in the intermediate stage and finally
to 0.8 in the long time limit of our experiment).
The value of exponent �, being greater than 1/3,
definitely indicates that the hydrodynamic term
makes an important contribution to the dynamic
evolution of the self-organized structure (conclu-
sion 3), although our system does not reach yet
the full hydrodynamic limit (� � 1). Time tcr,1 in
Figure 7 denotes the crossover time from the in-
termediate stage to the late stage [� is equal to 3�
simply because ���(t)2� becomes constant and
hence Im(t) � qm(t)3],5 whereas time tcr,2 is the
crossover time from late stage 1 and late stage 2,
as will be discussed later. Because the global
structure developed in this system is large, the
time-resolved LS method plays a major role in the
research in this regime, although time-resolved
SANS studies are indispensable for the studies in
the early to intermediate stages of SD.

Figure 8 shows the scaled structure factor F(x)
obtained from the LS profiles in the late stage of
SD. F(x), which includes SANS profiles, also is
presented later in Figures 18 and 19. In the late
stage, F(x) at x � 2 becomes independent of time,
and this indicates that the global structure grows
with dynamic self-similarity: the shape of the
global structure is conserved, and only the length
scale �m(t) � 2/qm(t) increases with time (dy-
namic scaling). This F(x) is relevant to the struc-
ture factor for a bicontinuous domain structure
(shown later in Fig. 11). An asymptotic form of
F(x) changes with x such that

F�x� : x�7 �for x � 2� and F�x� � x�4 �for x � 2�

(24)

The result shown in Figure 8 implies that the
crossover value of x defined by xc is given by

DYNAMICS AND HIERARCHICAL PATTERN FORMATION 3037



xc � H�t�/qm�t� � 2 (25)

where H(t) is the crossover q value at time t in the
late stage of SD at which the asymptotic behavior
changes, as shown by eq 24. It also reveals that
the dynamic changes of H(t) and qm(t) with t are
self-similar and are given by the same power law,
with the ratio kept around 2 independently of
time (conclusion 4).

Polymers versus Small Molecules

How does information obtained here for this poly-
mer system compare with that obtained for small-
molecule systems? How universal are the results?
Figure 9 shows the time evolution of LS profiles
during phase separation for critical mixtures of
simple liquids of 2,6-lutidine (L) and water (W)
(L/W) reported by Chou and Goldburg,32 one of
the famous experimental results in the field of
critical phenomena. Very near the critical point,
that is, at the temperature lower than the critical
point by only 0.6 mK, phase separation occurs at
a large length scale and a sufficiently slow tem-
poral scale as discussed earlier so that we can
follow the process through time changes in the LS
profiles from 10 to 500 s. As the phase-separating
structure grows and its �m value grows with t, the
magnitude of the scattering vector (qm � 2/�m)
at the maximum scattering intensity decreases,
as shown in Figure 9(a). If the length scale
changes but the shape of the structure is kept

unchanged in the phase-separation process, the
scattering functions at various t values [Fig. 9(a)]
can be scaled with length scale �m or wave num-
ber qm. The structure factor scaled with qm(t)
should then become universal with time t. Actu-
ally, the scaled structure factor becomes univer-
sal with time t, as shown in Figure 9(b). This
universal scaled structure factor characterizes
the shape of the structure growing with dynamic
self-similarity. This is typically found in the late-
stage SD process, during which each of the coex-
isting domains attains the equilibrium composi-
tion in the system.

The universal structure factor has also been
obtained with the DPB/HPI mixture, as already
shown in Figure 8. However, there are differences
in the time scales and in the quench depths in-
volved in these two systems. Both factors are
greater in the polymer system than in the small-
molecule system by approximately 1000 times.
Figure 10 compares these two scaled structures.10

The red line and yellow line are those obtained by
Chou and Goldburg32 and Wong and Knobler,33,34

respectively, for simple-liquid mixture of I/W
where I designates isobutyric acid; the green line
is for L/W,32 and the profile shown by plus signs is
for a 50/50 (v/v) mixture of polybutadiene (PB)
and polyisoprene (PI). The polymer mixture are
described in detail elsewhere.10 The scaled struc-
ture factor for this mixture is identical to that
shown in Figure 8. The solid black line was ob-

Figure 8. F(x,t) obtained from the late-stage LS profiles for the same sample used for
Figures 4–7 [xc  H(t)/qm(t) � 2 (independently of time)]. F(x,t) will be defined later by
eqs. 34 and 43a. The data are based on ref. 26.
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tained from a 3D computer simulation based on
the generalized TDGL equation, which takes into
account the hydrodynamic interactions24 (a gen-
eral nonlinear time-evolution equation). From
these results, we can conclude that the growing

structures for the simple-liquid mixtures and the
polymer mixture have the same shape, although
the length scales and time scales for the self-
organizing structures are very different in these
two systems. We can further conclude that these
structures can be theoretically predicted very well
by the generalized TDGL equation. The structure
factor for the polymer mixture is obtained over a
much wider reduced q range (up to ca. 10) than
the q range for the simple-liquid mixtures (up to
ca. 2). Thus, we can explore further details of
phase-separating structures, especially hierarchi-
cal structures, with polymers as a model system,
as will be detailed later in this section.

Visualization of the Universal Structure

What is the real-space structure corresponding to
the universal scaled structure factor shown in
Figure 10? A 3D phase-separating structure can
be detected by laser scanning confocal microscopy
(LSCM) for polymer mixtures because the rate of
phase separation is much slower than the data
acquisition rate of LSCM for constructing the 3D
volume objects shown in Figure 11 (�6 min), al-
though quantitative detection is almost impossi-
ble for simple-liquid mixtures. Figure 11 presents
typical 3D structures constructed with LSCM
that were obtained at particular times in the late
stage of SD for a binary polymer mixture of DPB
and PB-AN with equal phase volumes.35 The

Figure 9. Time evolution of LS profiles: (a) I(q,t) in the late stage of SD for a critical
L/W mixture and (b) F(x) (the data are based on ref. 32).

Figure 10. Comparison of F(x) values obtained for
critical mixtures of simple liquids [I/W (the red-line
data are based on ref. 32, and the yellow-line data are
based on ref. 34) and L/W (the data are based on ref.
32], a polymer mixture (50/50 v/v PB/PI), and a 3D
simulation based on the generalized TDGL equation
with a system size of 1283 (the data are based on ref.
10).
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weight-average molecular weight (Mw) and heter-
ogeneity index (Mw/Mn) of DPB were 1.43 � 105

and 1.12, respectively, whereas the corresponding
quantities of PB-AN were 9.5 � 104 and 1.07. Mn
denotes the number-average molecular weight.
PB-AN is PB labeled with a small amount of
anthracene for contrast enhancement under the
fluorescence mode of LSCM. The mixture had a
critical composition of 46 vol % DPB and a critical
temperature of 110 °C, and isothermal SD was
carried out at 40 °C. This mixture has various
advantages: (1) it satisfactorily fulfills dynamic
symmetry (having the parameter �a � 0.4); (2) it
has a weak LS contrast arising from a small re-
fractive-index difference because of an isotope ef-
fect, so that the large phase-separated structure
in the late stage of SD will not cause significant
multiple scattering effects; and (3) it has a clear
contrast difference between the two phases under
LSCM in the fluorescence mode. The small value
of �a becomes really immaterial for our discussion
here because the time scale involved is much
longer than 	ve and is in the hydrodynamic limit.

The two phases shown in Figure 11 consist of
the PB-AN-rich phase colored by blue (reflecting
fluorescence light emitted from anthracene) and
the DPB-rich phase left empty. The two phases
are periodic and cocontinuous, as highlighted by
the cross-sectional images displaced in the three
orthogonal sections (in the middle image of part
c). This kind of structure is called spongelike in
the field of differential geometry.36 Figure 12 pre-
sents a comparison of the scaled structure factors
obtained by time-resolved LS experiments (shown

Figure 11. Time evolution of 3D real-space struc-
tures, for a critical mixture of polymers in the late stage
of SD, constructed with LSCM (part c). Parts a and b
schematically show the initial homogeneous mixture
before phase separation and the final equilibrium
structure after phase separation, respectively. The
polymers were DPB and PB-AN. The data are based on
ref. 35.

Figure 12. Comparison of F[q/qm(t),t] values ob-
tained from time-resolved LS and from FFT (Fast Fou-
rier Transform) of 3D real-space structures constructed
with time-resolved LSCM for DPB/PB-AN. The data
are based on ref. 11.

Figure 13. Comparison of the time evolution of Qm(	)
versus 	 for critical simple-liquid mixtures (I/W), poly-
mer mixtures (50/50 v/v PB/PI), and a 3D TDGL sim-
ulation with a system size of 1283. The data are based
on ref. 10.
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by red markers) and by the time-resolved LSCM
experiments (shown by black markers); the latter
was obtained by a 3D Fourier transform of the
real-space images shown in Figure 11. The com-
plete agreement of the two scaled structure fac-
tors over a wide q scale and intensity scale en-
sures that the 3D structures captured here rep-
resent the real structures developed in the
mixture. Moreover, this structure factor is iden-
tical to the universal structure factor shown in
Figure 10. Therefore, it must represent those
evolved in the late stage of SD for the critical
mixtures of simple liquids as well, although real-
space 3D images of this kind have never been
captured for small molecules, simply because the
phase separation is too fast.

The distribution of the interface curvature and
its time evolution were analyzed from the 3D
real-space structures constructed on the basis of
the LSCM experimental results and by 3D com-
puter simulations with the generalized TDGL
equation.37 The results are in very good agree-
ment, revealing that the interface is saddle-
shaped almost everywhere, having a negative
Gaussian curvature K defined by

K � k1k2 (26)

where ki (i � 1 or 2) is a principal curvature of the
interface. It is essential for the cocontinuous
structure to have a saddle-shaped interface be-
cause the spaces on both sides of the saddle in-
terface can be continuous, unlike an ellipsoidal
interface, for which the space inside the interface
is isolated from the space outside the interface.

Further Conclusions and Remarks

Before closing this section, let us summarize the
various conclusions obtained by LS, SAXS, and
SANS studies, although more details may be
found elsewhere.5

The time evolution of characteristic wave num-
bers at various �T ’s [qm(t;�T)] becomes universal
with �T if we properly scale qm(t;�T) and t with
the difference in the space-time scale of various
mixtures undergoing phase separation at differ-
ent �T ’s [�c(�T) and tc(�T)]. This is the so-called
scaling postulate.38,39 The scaled characteristic
wave number [Qm(	)] and scaled characteristic
time (	) are given by

Qm�	� � qm�t; �T�/qm�0; �T�, 	 � t/tc��T� (27)

where tc(�T) is given by

tc��T� � 1/�Dapp��T�qm
2 �0; �T�� (28)

Dapp(�T) is the mutual diffusion coefficient, and
qm(0;�T) is the characteristic wave number,
which can be determined from scattering exper-
iments in the early stage of SD when the CHC
linearized theory is approximately valid. qm(0;
�T) is related to �c(�T) by qm(0; �T) � 1/(�2
�c(�T)). If the scaling postulate is valid, Qm(	)
versus 	 becomes universal with �T, and this
means that �T changes the space-time scale but
not the phase-separation mechanism and pro-
cess. Good examples showing the validity of the
scaling postulate over wide Qm and 	 scales can
be found in refs. 40 and 41, for example. Figure
13 shows a test of the scaling postulate for the
systems described earlier in conjunction with
Figure 10. The behavior of Qm versus 	 is uni-
versal, being independent of the systems at
least qualitatively. The details are reported
elsewhere.10

The hydrodynamic interactions play an impor-
tant role in the domain growth in the late stage of
SD, so that the following scaling law

Qm � 	��, � � 1 (29)

is fulfilled, as shown in Figure 13. The general-
ized TDGL equation, expressed by reduced vari-
ables, contains a single system-dependent param-
eter42 �̃ which is a reduced viscosity:

�̃ �
1

45 	 N
2Ne


 1.4

for N � Ne (30)

For critical simple-liquid mixtures, �̃ is a univer-
sal quantity ( �̃ � 0.12), and so Qm versus 	
becomes a universal curve. This is also the case
for polymer mixtures with N 
 Ne. However, for
polymer mixtures with N � Ne, �̃ is not a univer-
sal constant but depends on N/Ne, so that Qm
versus 	 also becomes nonuniversal. Systems with
different N/Ne values show branching in the curve
of log Qm versus log 	 (so-called N-branching40) be-
cause the larger N/Ne is, the larger �̃ is and the later
the hydrodynamic interactions come into play.
Therefore, to obtain the universal curve for entan-
gled polymer systems, we must use the reduced
time (	p) renormalized by N/Ne, instead of 	 itself,

	p � 	�N/Ne�
1.4 (31)
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as theoretically predicted first by Onuki43 and
experimentally elaborated by Hashimoto and co-
workers.40,44 In fact, the polymer mixture shown
in Figure 13 still does not show the scaling rela-
tion of eq 29 but rather shows the exponent � �
0.85 in eq 23, and thus it is likely that the system
is asymptotically approaching a time domain in
which eq 29 is fulfilled.

Polymer mixtures definitely show the early-
stage SD regime in which this characteristic be-
havior can be described by Cahn’s linearized the-
ory; for example, qm(t) is a constant independent

of time over a large time scale t or a reduced
timescale5 	 
 1. In the time-resolved SANS ex-
periment45 shown in Figure 14, for example, the
early stage of SD can be observed in the time scale
of 45.5 
 t 
 208 min or 0.38 � 	 
 1.7. The
change in the scattering structure factor at t

 45.5 min represents the very early stage during
which the characteristic Fourier mode of the com-
position fluctuation having qm(0) (�1.4 � 10�1

nm�1) becomes dominant, whereas that at t � 208
min represents the intermediate stage of SD in
which qm starts to decrease because the mode-

Figure 14. Time evolution of the SANS profiles of a 50/50 (w/w) mixture of deuterated
polycarbonate (d-PC) and poly(methyl methacrylate) (PMMA) in the very early (0–45.5
min), early (57.0–208 min), and intermediate-to-late stages (t � 269.6 min) of SD (from
ref. 45).
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coupling effects arising from the nonlinearity in
the time-evolution process.

The universal scaled structure factor in the
late stage of SD was for the first time elucidated
to reflect the spongelike structure both for poly-
mers and for simple liquids.10

Global-to-Asymptotic Crossover Regime

Upon reducing the length scale of our observation
such that r 
 Rm, we come to the asymptotic or
interface (Porod’s law) regime. However, before
discussing this regime, let us add a brief remark
about the global-to-asymptotic crossover regime
in which our q scale of observation is (1/�m) 
 q

 (1/Rm). In this regime, scattering is affected by
a special curvature of the interface, which may be
called the scattering-mean curvature. The effect
of the interface curvature on the scattering was
elaborated first by Kirste and Porod46 and later
by Tomita.47 They found the following asymptotic
behavior for the scattered intensity [I(q)] and the
density correlation function [�(r)]:

I��q� �
�

X�1 � X�
q�4	1 �

1
Rm

2 q�2 � · · ·
 (32)

and

��r� � 1 �
�

4X�1 � X�
r	1 �

1
12Rm

2 r2 � · · ·
 (33)

where I(q) is defined by

I��q� � I�q�/�
0

�

q2I�q�dq (34)

and X is the volume fraction of one of two phases.
The scattering-mean curvature (Rm

�1) is defined
as follows:

Rm
�2 � �3�H2� � �K��/2 (35)

where the quantity �I� (I � H2 or K) is an area-
averaged quantity of I defined by

�I� � � I da�� da (36)

�da is the integral over the entire interface area,
K is the local Gaussian curvature of the interface
defined by eq 26, and H is the local mean curva-
ture defined by

H � �k1 � k2�/2 (37)

For qRm � 1 or r/Rm � 1, the second term in rhs
of eq 32 and the third term in rhs of eq 33 vanish,
and hence the equations are reduced to Porod’s
law.48 However, when qRm and r/Rm approach
unity from a larger value of q and a smaller value
of r, respectively, the curvature gives an upward
deviation from Porod’s law in the plots of both I(q)
versus q and �(r) versus r, which may be used to
estimate Rm. Figure 15 presents a typical plot of
[1 � �(r)]/r versus r2 obtained from LS for a par-
ticular polymer mixture of PB and PI with a com-
position close to the critical one at a particular
time (85.8 min) and temperature (55 °C) in the
late stage of SD.49 The slope and intercept at r2

� 0 in the plot yield Rm
�1 � 5.21 � 10�4. How

does this value compare with the value obtained
from the real-space analysis? Unfortunately,
there are no real-space data available for this
system. Thus, we compare the real-space results
obtained for another polymer mixture of PB and
poly(styrene-random-butadiene) (SBR).50 To fa-
cilitate the comparison, we compare the scatter-
ing-mean curvature reduced by the characteristic
wave number [qm(t)] defined by the following di-
mensionless quantity (Cr):

Cr � Rm
�1�t�/qm�t� (38)

Figure 15. Plot determining the scattering-mean
curvature of the interface for the PB/PI mixture in the
late stage of SD (from ref. 49).

DYNAMICS AND HIERARCHICAL PATTERN FORMATION 3043



The measured value of qm(t) � 1.0 � 10�3 nm�1

for the PB/PI system yields Cr � 0.52, which is
defined as CrS to designate the Cr value estimated
by the scattering method. The phase-separated
structure of PB/SBR at 100 °C for 7 h in the late
stage of SD was analyzed by LSCM to obtain the
curvature distribution [P(H,K)].51 The results
yield qm � 0.52 � 10�3 nm�1, �H2� � 2.2 � 10�8

nm�2, and �K� � �6.2 � 10�8 nm�2. These val-
ues, together with eqs 35 and 38, give the value of
Cr defined as CrL � 0.49. CrS and CrL agree quite
well (CrS/CrL � 1.1). These results (Cr � CrS � CrL
� 1/2) and the result H(t)/qm(t) � 2 give an ap-
proximation of the relation between the crossover
q value of H(t) and Rm

�1:

H�t� � 4Rm�t��1 (39)

This provides a quick and rough estimation of
the scattering-mean curvature for the sponge-
like phase-separated structure from I(q,t) or
F(x).

Asymptotic (or Interface) Regime

In this regime, the interface appears to be flat
because the q scale or r scale of our observation is
large (q � 1/Rm) or small (r 
 Rm), respectively.
Hence, the second term and third term on rhs of
eq 32 and 33, respectively, become insignificant.
However, the effect of the finite interface width
comes into play in the scattering formula so that
the asymptotic form of the scattering [I(q)] in eq
32 should be replaced by

I��q� � �X�1 � X���1�q�4exp���2q2� (40)

where � is the parameter associated with tI
52 [tI

� (2)1/2�]. Equation 40 is Porod’s equation gen-
eralized for a pseudo two-phase system with a
finite interface thickness. I(q) is corrected for the
scattering intensity [Ithermal,e(q)] arising from
thermal composition fluctuations within each of
two phases (as discussed later) and for thermal
diffuse scattering (TDS) arising from longitudinal
acoustic phonons53.

The validity of the asymptotic form of eq 40
was confirmed experimentally for the LS data in
the late stage of SD;54 � and tI were evaluated as
a function of time with plots of �n[q4I(q)] versus
q2. In Figures 8, 10, and 12, F(x) at x � 2 is
represented by F(x) � x�n, or I(q) at q � H is
represented by I(q) � q�n, with n slightly larger

than 4 if the ordinate scale is expanded. However,
it appears that n � 4 for the compressed scale
used in these figures. That n is greater than 4 and
that the asymptotic form of eq 40 is valid lead us
to the following conclusions. The interface ob-
served at length scale r at tI 
 r 
 Rm is flat but
has a diffuse boundary, and so the scattering con-
trast varies gradually across the interface. Con-
sequently, the interface at a given time in the late
stage is not characteristic of the fractal surface
(conclusion 5). If it is characteristic of a fractal
surface, exponent n should satisfy 3 � n � 4
because

n � 2d � ds (41)

where d and ds are the space dimensionality (d
� 3 for 3D space) and the surface fractal dimen-
sion, respectively.

Figure 16 shows the time changes in �(t),
tI(t), and �(t)/qm(t) in the late stage of SD, which
were estimated on the basis of eq 40 for the
same DPB/HPI mixture used for Figures 4 – 8.26

�(t) naturally decreases with time because of
the interfacial tension and is given by a power
law

��t� � t��I (42)

with �I � 0.8, so that the time evolution of the
interface has dynamic self-similarity; that is, it
is dynamically fractal (conclusion 6), as sche-
matically shown in Figure 17. A close observa-
tion indicates that �I is slightly larger than the
scaling exponent � defined by eq 23 at tcr,1 
 t

 tcr,2 and that �I is equal to � at t � tcr,2, as
revealed from the time change in �/qm. The
inequality �I � � suggests that the local struc-
ture with a higher q(��) values relaxes more
quickly toward equilibrium than the global
structure with a smaller q(�qm) values. This is
consistent with conclusion 1 and provides a rea-
son why the interface at a given time in the late
stage does not have surface fractality (conclu-
sion 5). The characteristic interface thickness
in the late stage covered in our experiment
tends to decrease with time from about 200 nm
to the equilibrium value tIe of about 80 nm,
which is shown by the solid line at the time
scale longer than the same crossover time tcr,2
between late stages 1 and 2 (conclusion 7a). tIe
is consistent with the value predicted by the
Joanny–Leibler theory55 (conclusion 7b).
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Now let us further explore this regime by in-
vestigating the scaled structure factor F(x) with
qm:

F� �x� � I��q�qm
3 (43a)

I(q) has already been defined by eq 34. From eq
40, F(x) in this regime is given by

F� �x� � �X�1 � X���1��/qm�x�4exp����qm�2x2�

(43b)

F(x) [or F(x)] in this regime involves two length
scales: � and 1/qm � �m. In the later phase of the
late stage at t � tcr,2, �/qm and � (or tI) reach the
respective constant values, as shown in Figure 16.
However, qm keeps decreasing with t according to
the scaling law of eq 23 or 29, and so does the
parameter �qm � �2(tI/�m ) which is related
to the relative interfacial thickness. Thus, the
exponential factor in rhs of eq 43b gradually in-
creases and approaches unity. Thus, F(x)x4 grad-
ually increases toward Porod’s limiting value.

Explorations of the aforementioned phenome-
non involve the investigation of F(x) up to large x
values, which badly needs a combined time-re-
solved SANS and LS technique. The SANS inten-
sity profiles were corrected for Ithermal,e(q). The
TDS intensity level is very low in comparison
with the intensity level Ithermal,e(q) for this sys-
tem, and so the TDS correction is not important at

Figure 16. Time changes of �, �/qm, and tI obtained from the LS profiles in the
asymptotic regime and in the late stage of SD for the same DPB/HPI sample used for
Figures 4–8 (from ref. 26).

Figure 17. Schematic illustration of dynamic fractal-
ity (dynamic self-similarity) in the time evolution of a
part of the interface from left to right in the late stage
of SD.
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all. The LS intensity level is much higher than
the TDS intensity level and Ithermal,e(q), and so
the LS intensity does not need correction at all.

The corrected SANS intensities were then used
to construct F(x,t) and are plotted in Figure 18
together with those obtained by LS at six repre-
sentative times27 in the late stage of SD for the
same DPB/PI mixture discussed in Figures 4–8
and 16. The value F(x) in the q gap between LS
and SANS was estimated, as shown by the dotted
line in each figure, by the interpolation of F(x,t)
with x�7 from the large values of x covered with
LS and with x�4 from the small values of x cov-
ered with SANS. F(x,t) in the gap has an x�4

dependence in Figure 18(b–f), whereas it has x�7

for x 
 2 and x�4 for x � 2 in Figure 18(a),
according to the discussion in the previous sec-
tion.

Two important features can be observed in Fig
18: (1) all F(x,t) values at different times have a

deviation from q�4 (or x�4) at the high q range of
q � qint or x range of x � xint so that they appear
to have a shallower q dependence (close to q�2.5)
independent of t, and (2) the crossover wave num-
ber qint or reduced wave number xint  qint/q is a
function of t, so that xint increases with t. So far,
much attention has been focused on F(x,t), only at
relatively small x values satisfying x � 2, to char-
acterize the global structure, but not much atten-
tion has been paid to F(x,t) at x � 2, which char-
acterizes the Fourier modes of the structure oc-
curring at shorter length scales, except for a few
works.5,26,54 Such a wide range of x as covered in
this work, as large as 30, has never been reported.
Features 1 and 2 have never been observed, a
qualitative picture of which is presented later.

Figure 19 compares curves of F(x,t) like those
shown in Figure 18 at three representative t’s
(227.8, 444.5, and 1002.3 min, corresponding to
profiles 1–3).27 Profile 4, plotted with cross mark-

Figure 18. F(x,t) at six representative times in the late stage of SD plotted in a
double-logarithmic scale for the same DPB/HPI mixture used for Figures 4–8 and 16.
The F(x,t) values in the q gap, shown as broken lines, are interpolated with the
asymptotic laws of F(x,t) with x (x�7 at x � 2 and x�4 at x � 2; from ref. 27).
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ers, is F(x,t) obtained by LS at much later times
(1106–5424 min) during which F(x,t) is universal
with t, even at x � 2 (but at x � xint, xint for this
profile existing beyond the highest x limit acces-
sible to this experiment). Profile 4 has been ver-
tically shifted by 1 decade for clarity. In profiles
1–3, the LS and SANS profiles have been com-
bined just as in Figure 18. The q gap for each
profile has been estimated in the same manner as
described previously.

We can find two kinds of nonuniversalities in
Figure 19. The first nonuniversality, called extrin-
sic nonuniversality, is that in the Porod region, in
which F(x,t) is approximately x�4 the intensity of
F(x,t) increases with t. This extrinsic nonuniver-
sality primarily arises from a decreasing contri-

bution of the interface thickness in F(x,t), as dis-
cussed previously in detail in conjunction with eq
43b. This nonuniversality appears in late stage I
and disappears in late stage II: F(x,t) eventually
becomes universal when tI/�m(t) approaches 0.
This is clearly shown by the fact that profile 4,
which corresponds to F(x,t) in late stage II, falls
onto F(x,t) at 1002.3 min (profile 3) at x 
 xint,3.
Thus, the nonuniversality is a result of the exis-
tence of the two length parameters �m(t) and tI(t),
which characterize the system, and the contribu-
tion of tI(t) is not trivial at particular q and t
domains.

The second nonuniversality, called intrinsic
nonuniversality, can be observed at x � xint,i (i
� 1–3 in Fig. 19). Thus, even in the later time of
the late stage (i.e., late stage II), the intrinsic
nonuniversality appears as x crosses over xint,i.
The scattering intensity from the interface, which
decreases according to x�4, becomes very weak at
large x values greater than xint. Therefore, the
intensity at large x values is eventually out-
weighed by the intensity arising from the compo-
sition fluctuations inside the interphase or inside
each domain. Because the intensity arising from
the fluctuations within each domain [Ithermal,e(q)]
has already been subtracted from I(q,t), the re-
maining contribution to F(x,t) in the large x re-
gion should be excess scattering from the inter-
phase. Thus, in the high x range above xint,i (i � 1
� 3), F(x,t) becomes related to that for the inter-
phase. To the best of our knowledge, this intrinsic
nonuniversality has never been reported in the
past. We find F(x,t) � x�n, with n � 2.5 indepen-
dent of t at x � xint, as discussed in the next
section. The crossover value xint increases with
time because the reduction of qm(t) with t out-
weighs that of the crossover wave number [qint(t)].
The existence of xint reflects the fact that an ad-
ditional characteristic length scale �int plays an
important role in the scattering at q � qint.

Interphase Regime

As shown in Figures 5 and 6, the scattering in this
regime (1/tI 
 q 
 1/Rg or Rg 
 r 
 tI) becomes
time-independent in the late stage of SD. How-
ever, the intensity level in this regime is defi-
nitely higher than Ithermal,e(q) at 40 °C, as high-
lighted by the hatching in Figures 5 and 6 (con-
clusion 8a). The results are reproducible, and
the excess scattering in this q region cannot be
observed for the scattering profiles for the single-

Figure 19. F(x,t) for the late stage of SD plotted in a
double-logarithmic scale for the same sample used for
Figure 18. Profiles 1–3 are the LS and SANS profiles
for F(x,t) obtained in the late stage at 227.8, 444.5, and
1002.3 min after the onset of SD, whereas profile 4 is
the LS profile obtained between 1106 and 5424 min.
The solid lines in the profiles have been estimated by
the asymptotic law described in Figure 18., and the
intensity level at x � 2 increases from profile 1 to profile
3 (from ref. 27).
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phase regions or for those in the early to interme-
diate stages of SD.

As shown in Figure 6, the scattering domi-
nantly arises from the interface in the high q
region satisfying q � 1/Rm; � and tI are relevant
parameters characterizing our system. However,
its intensity becomes insignificantly small in the
interphase regime because the intensity de-
creases according to q�4, and hence it is domi-
nated by the intensity arising from thermal com-
position fluctuations within coexisting two phases
(Ithermal,e) and the intensity arising from those
within the interphase (Iinterphase). Because Ither-

mal,e at 40 °C is well characterized by SANS, as
shown by the broken line in Figures 5 and 6, we
can approximately estimate the contribution of
Iinterphase:

Iinterphase�q� � I�q� � Ithermal,e�q� (44)

Iinterphase(q), estimated from eq 44, is plotted in
Figure 20 with a double-logarithmic scale. The
straight line in the plot has a slope of �2.5:

Iinterphase�q� � q�2.5 (45)

This result is analogous to the scattering from the
crumpled tethered membrane56,57 (conclusion
8b). This intriguing phenomenon observed in the

late stage of SD has never been reported before
and deservers further investigation in the future.

The scattering observed with this wave-num-
ber scale provides a simple picture, as presented
in the insets (a) and (b) in Figure 20. SANS in this
regime detects thermal equilibrium structures of
the two phases A and B as well as the intervening
interphase IAB, as shown in the inset (a) in Figure
20. The interfacial area � and volume �tI, as well
as the composition difference ��e between the
two phases and the average composition gradient
at the interface, are not relevant parameters
here, but the fluctuations from the average com-
position profile within the interphase are rele-
vant. If we can scan the relevant fluctuations
normal to the interface (z axis), we can anticipate
the fluctuations of component A (��A), as depicted
in the inset (b) in Figure 20. ��A in the A and B
phases is predicted from Ithermal,e and is relatively
small in comparison with ��A in the interphase.
The latter is expected to increase with scanning
from the edges of the interphase toward the mid-
dle, as the system locally becomes effectively close
to the critical condition. The fluctuations are an-
ticipated to be directionally dependent; ��A par-
allel to the interface may be different from that
perpendicular to the interface. Theoretical and
experimental studies of the fluctuations deserve
future investigation.

Finally, the compositions fluctuations in the
interphase are expected to be damped as tI de-
creases. Hence, Iinterphase(q) cannot be observed,
and �int will not come into play in a strong segre-
gation condition.

Local Regime

In this local regime, the length scale of observa-
tion (r 
 Rg or q � 1/Rg) is so small that the
scattering depends only on the local composition
[�A(t)]. �A(t) increasingly deviates from the initial
composition (�A

0 ) with time after the onset of SD.
The deviation increases with time in the early to
intermediate stages and reaches the equilibrium
at the end of the intermediate stage or the begin-
ning of the late stage. This scattering from ther-
mally activated local thermal composition fluctu-
ations inside each domain [Ithermal(q,t)] is given at
q � �T by

Ithermal�q, t� � ��A�t��1 � �A�t���spaceq�2 (46)

where �x�space is the average of quantity x over all
space. It changes from

Figure 20. Excess SANS scattering intensity profile
[Iinterphase(q)] from composition fluctuations in the in-
terphase for the same DPB/PI mixture used for Figures
4–8, 16, 18, and 19 in the late stage of SD. Inset (a)
represents a macroscopic phase separation in two
phases (A and B) with an interphase (IAB), whereas
inset (b) schematically represents composition fluctua-
tions in A and B and in IAB of characteristic thickness
tI.
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Ithermal,e
23°C �q� � �A

0 �1 � �A
0 �q�2 (47)

at 23 °C before the onset of SD to

Ithermal,e
40°C �q� � �X��A1

e �1 � �A1
e ��

� �1 � X���A2
e �1 � �A2

e �}q�2 (48)

at the beginning of the late-stage SD process
when the local composition of the phase-separat-
ing domains attains the equilibrium composition
shown in Figure 4. For �A

0 � 1/2, as in our case,
Ithermal(q,t) decreases from the level shown by the
solid line to that by the broken line in the lower
half of Figure 5. We can estimate the time evolu-
tion of the composition difference [��(t)] defined
in Figure 4 from that of Ithermal(q,t). The estima-
tion yielded such a natural result29 that ��(t)
increases with t and reaches the equilibrium
value (��e) at t � tcr,1 in the late stage of SD, as
given by eq 49a (conclusion 9a). Here tcr,1 was
determined from the time scale when the scaling
exponents � and � in eq 23 satisfy � � 3� and
when F(x,t) versus x becomes independent of
time. The deviation of the composition difference
at time t [���(t)] from ��e, defined in eq 49b, can
be approximated by eq 49c in the time domain in
which ��(t) is close to ��e:

���t� � ��e�t/tcr,1�
1/10 at t � tcr,1

and ��e at t � tcr,1 (49a)

����t� � ��e � ���t� (49b)

���eexp��t/	cf� (49c)

where 	cf is 100 min at 40 °C. Equation 49c sug-
gests the way in which the system attains equi-
librium in terms of ���(t) and that ���(t) can be
described by a linear differential equation with t
(conclusion 9b).

Summary

A number of conclusions (conclusions 1–9) have
been elucidated on the space–time organization of
the structures in binary critical mixtures via SD
with dynamically symmetric polymer mixtures
used as model systems. The self-organization of
the structures is characterized by at least four
independent length scales: (1) �m(t) � 2/qm(t),
the characteristic length scale for the global
structure; (2) tI(t), the characteristic interface

thickness; (3) �T, the thermal correlation length
within each phase-separated domain; and (4) �int,
the thermal correlation length characterizing
thermal composition fluctuations in the inter-
phase. �int becomes irrelevant in a strong segre-
gation condition with tI of the order of segment
length a. The mean radius of the interface curva-
ture [Rm(t)] has a special relationship with �m(t)
(conclusion 4). As for time sequences of various
events in the self-organization process, the follow-
ing points are worth noting: (1) the local compo-
sition first reaches the equilibrium one at phase-
separation temperature T at t � tcr,1, the onset
time of the late stage of SD (conclusion 9a); (2) the
interfacial thickness subsequently reaches the
equilibrium value tI

e at t � tcr,2 in the late stage
(the late stage II; conclusion 7a); and (3) �(t) (the
local wave number) and qm(t) (the global wave
number) keep decreasing with t, reducing the in-
terfacial free energy of the systems. In the early
time in the late stage (tcr,1 � t � tcr,2, late stage I),
�(t) relaxes more quickly than qm(t), and this is
consistent with the general law found in the or-
dering process driven by the interfacial free en-
ergy (conclusion 1).

DYNAMICS OF COMPOSITION
FLUCTUATIONS IN DYNAMICALLY
ASYMMETRIC MIXTURES

We have discussed the nonlinear dynamics en-
countered in the phase-separation processes for
dynamically symmetric mixtures. In the discus-
sion, we have highlighted not only the universal
features in the behavior of small-molecule sys-
tems and polymer systems but also various pieces
of new information unveiled with polymers as
model systems and with a combined SANS and
LS method to cover an extremely wide q range. In
this section, we focus on the dynamics for dynam-
ically asymmetric mixtures. Again, we should
stress that polymers provide very good model sys-
tems for exploring various unexplored phenom-
ena that underlie the topical system, simply be-
cause the dynamic asymmetry parameter �a can
easily be tuned through changes in the relative
molecular weights of the mixtures. The effects of
the dynamic asymmetry on the dynamics of the
fluctuations and pattern formation are generally
important for small-molecule systems as well,
such as microemulsion systems consisting of a
surfactant, oil, and water, membranes, and any
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systems having a large mobility difference among
the constituent molecules or supramolecules.

Systems to be Handled

Here we are concerned with an asymmetric poly-
mer mixture19 consisting of DPB (Mw � 3.74
� 105) and PI (Mw � 8.5 � 104). Their Rg values
for the unperturbed chains are 21.0 and 9.5 nm,
respectively. The weight-average DPs of DPB and
PI (defined as NW,DPB and NW,PI, respectively)
have a ratio of NW,DPB/NW,PI � 5.7, and the self-
diffusivities of PI and DPB (defined as DPI � 3.2
� 10�17 m2/s and DDPB � 8.1 � 10�19 m2/s, re-
spectively) have a ratio of DPI/DDPB � 40. There-
fore, the system has a sizable asymmetry param-
eter (�a � 1.4).

We explore the dynamics of the composition
fluctuations of the mixture with a composition of
50/50 w/w in a single-phase state with a time-
resolved SANS technique. To achieve this goal,
we explore the relaxation process of the fluctua-
tions after rapid changes in the pressure within a
single phase. The results obtained in this study
are discussed later in conjunction with those ex-
pected or obtained for other systems, such as poly-
mer solutions and aqueous dispersions of ionic
colloids.

Signal-Averaging Time-Resolved SANS Technique

When the pressure imposed on the system is sud-
denly changed from PH to PL at a given tempera-
ture within a single-phase state, the thermody-
namic state of the system changes and hence the
composition fluctuations change or relax from
those at equilibrium at PH to those at equilibrium
at PL. The relaxation process can be detected by
time-resolved SANS. The relaxation for the DPB/
HPI mixture occurs over a time scale of approxi-
mately 100 s and should be followed with a time

slicing of approximately 10 s or less. The time-
sliced SANS profiles obtained with this time scale
still have a poor single-to-noise ratio. We can
overcome this difficulty by adopting the signal-
averaging method developed in rheo-optical stud-
ies of dynamic wide-angle X-ray diffraction by
Kawai et al.58 and in dynamic LS studies by
Hashimoto et al.59

The method19 to be employed here involves
signal accumulation during the relaxation pro-
cess over repetitive pressure-jump experiments
between the two equilibrium states at PH and at
PL, as shown in Figure 21. The figure involves
signal averaging over 20 runs of the pressure
jump from PH to PL (j � 1 � N, N � 20), each run
consisting of 50 time slices (i � 1 � 50) with a 20-s
data-acquisition time per slice and a 5-s interval
between the successive slices. The time slicing
periods (i) at different relaxation runs (j) were
synchronized. The signal-averaged SANS profile
I(q,t) at time t is given by

I�q, ti� � �
j�1

N

Ij�q, ti�/N �i � 1 � 50, N � 20� (50)

where time ti is taken at the beginning of ith data
acquisition in each relaxation experiment (j). To
avoid some artifacts involved by the signal-aver-
age process, we confirmed the identity of the equi-
librium scattered intensity at 80.0 PH and 0.1
MPa PL at 298.1 K and at 100.0 PH and 0.1 MPa
PL at 309.0 K in each run j of the relaxation
experiments. The SANS experiments were car-
ried out with the continuous neutron source at
the JRR-3M reactor at JAERI (Japan Atomic En-
ergy Research Institute, Tokai, Japan) with the
SANS-U of the ISSP (Institute of Solid State
Physics, University of Tokyo). A strong pulse neu-
tron source would be ideal for this kind of relax-
ation experiment.

Figure 21. Scheme of a signal-averaging technique used in the SANS relaxation
experiments which involve a pressure jump within a single-phase region.

3050 HASHIMOTO



Results and discussion

The DPB/PI mixture had an LCST-type phase
diagram, and its Ts at 0.1 MPa was 314.2 K. We
installed the molded sample of the mixture into
the pressure cell, according to a method described
in detail elsewhere,19 which was specially de-
signed for SANS measurements under high pres-
sure (up to 200 MPa) and at high temperatures
(up to 523 K). The details of the cell for high
pressures and temperatures are reported else-
where.60 We measured the pressure dependence
of the SANS intensity at 298.1 and 309.0 K to
investigate the pressure dependence of the Flory–
Huggins segmental interaction parameter � be-
tween DPB and PI. The pressures used here were
0.1, 20.0, 40.0, 60.0, and 100.0 MPa at 309.0 K.
For this purpose, the SANS scattered intensity
distribution was measured for 30 min at each
temperature and at each pressure. The best fit of
the SANS profiles with the RPA theory yielded �
as a function of pressure P:19

� � 6.44 � 10�4 � 1.71 � 10�6

� P �MPa� at 298.1 K (51)

and

� � 7.29 � 10�4 � 8.74 � 10�7

� P �MPa� at 309.0 K (52)

The � value thus determined decreases with P,
and this indicates that the DPB/PI mixture had
an upper critical solution pressure (UCSP) phase
diagram.

Figure 22 shows � at the spinodal point (�s;
solid line) plotted as a function of �DPB for the
DPB/PI mixture. The spinodal line was calculated
with the following equation:

�s �
�0

2 � 1
�DPB�DPBNw,DPB

�
1

�PI�PINw,PI
� (53)

The ordinate axis on the rhs of the figure corre-
sponds to the temperature at 0.1 MPa calculated
from the following temperature dependence of �
at 0.1 MPa, which in turn was measured from
SANS experiments with the same blend in the
single-phase state at 0.1 MPa as a function of
temperature:

� � 2.69 � 10�4 � 0.606/T at 0.1 MPa (54)

The figure also includes changes in the thermo-
dynamic state of the blend induced by the pres-
sure jump from 80.0 to 0.1 MPa at 298.1 K and
from 100.0 to.1 MPa at 309.0 K, which were esti-
mated from eqs 51 and 52, respectively. The pres-
sure jump from 80.0 to 0.1 MPa at 289.1 K and
that from 100.0 to 0.1 MPa at 309.0 K correspond
to the sudden increase in the � value by �� � 1.37
� 10�4 and �� � 8.73 � 10�5, respectively, or to
the sudden temperature increase by �T � 20.1 K
and �T � 13.0 K, respectively, toward the spi-
nodal point from eqs 51, 52, and 54. Thus, the
composition fluctuations increase with time after
the pressure jump, and accordingly, the SANS
intensity increases with time.

For the relaxation process of the composition
fluctuations in the single-phase state, as observed
with time-resolved SANS, (1) ��(r,t) is small, so
that the linearized time-evolution equation
should work well, and (2) the length scale of ob-
servation involved in the SANS q range is small,

Figure 22. Phase diagram of a DPB/PI blend in the
parameter space of � (left ordinate) or T (°C) at 0.1 MPa
(right ordinate) and the volume fraction of DPB in
DPB/PI. The solid line indicates the spinodal line of the
DPB/PI blend calculated with the Flory–Huggins the-
ory. The broken line with squares and the solid line
with circles represent the quench depth in � due to the
pressure jumps at 298.1 and 309.0 K, respectively
(from ref. 19).
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so that the hydrodynamic interactions may not
play an important role. Consequently, the process
is well approximated by eq 15. Because I(q,t) is
given by

I�q, t� � �����q, t��2� (55)

eqs 15 and 55 give the time evolution of I(q,t) in
the relaxation process:

I�q, t� � I�q, ��

� �I�q, 0� � I�q, ���exp��2R�q�t� (56)

where I(q,0) is the scattering intensity profile at t
� 0 right after the onset of the pressure jump and
I(q,�) is the equilibrium scattering intensity pro-
file at t � � after the pressure jump. R(q) is the
relaxation rate of the q Fourier mode of the fluc-
tuations:

R�q� � �eff�q�q2��r0 � Cq2� (57)

where

�eff�q� � ��q�/�1 � �ve
2 q2� (58)

The mean-field theory gives

�r0 �
2kBT

�0
��s � ��, C �

2kBT
�0

a2

36��1 � ��
(59)

Because I(q,t) increases after the pressure jump,
we rearrange eq 56 to obtain

ln�I�q, �� � I�q, t�� � ln�I�q, �� � I�q, 0�� � 2R�q�t

(60)

Therefore, the intensity of I(q,�) � I(q,�) plotted
with a logarithmic scale linearly decreases with t
after the onset of the pressure jump, the rate of
which gives the relaxation rate R(q).

Figure 23 presents a typical plot of �n[I(q,�)
� I(q,t)] versus t for the time change in the SANS
intensity profile for the DPB/PI mixture.19 The
equilibrium intensity I(q,�) can be obtained with
a high accuracy, and this is a big advantage for
this analysis. Although the data are somewhat
scattered, a linear reduction has been found, as
expected from eq 60, giving rise to a natural
trend: the larger q is, the larger R(q) is, as pre-
dicted from eqs 57 and 59.

Figure 24 shows the q dependence of R(q) esti-
mated from plots of ln[I(q,�) � I(q,t)] versus t.19

In both experiments, R(q) increases with q, as
expected from the term q2(�r0 � Cq2) in eqs 57
and 59. The values of R(q) at 309.0 K [Fig. 24(b)]
are comparable to those at 298.1 K [Fig. 24(a)] in
the observed q range, and this seems to indicate

Figure 23. ln[I(q,�) � I(q,t)] plotted as function of
time t at 298.1 K and at fixed q values for a DPB/PI
blend. The solid lines were obtained by a linear regres-
sion of the data (from ref. 19).

Figure 24. R(q) for the q Fourier mode of the concen-
tration fluctuations plotted as a function of q for a
DPB/PI blend at (a) 298.1 and (b) 309.0 K (from ref. 19).
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that the critical slowing down cannot be clearly
observed. This may be primarily because 309.0 K
is not close enough to 314.2 K (Ts) and also be-
cause the increase in the Onsager kinetic coeffi-
cient term [�eff(q)] with the temperature domi-
nates the reduction in the term �r0 � Cq2 with
the temperature (see eq 57).

Now let us consider the q dependence of R(q)/
q2. From eqs 57–59, it follows that

R�q�

q2 � �eff�q�
2kBT

�0
��s � ���1 � �T

2q2� (61)

�T for the composition fluctuations is given by

�T �
a2

36��1 � ����s � ��
(62)

In the limit of q 3 0, we expect a linear increase
of R(q)/q2 with q2, simply because �eff(q3 0) in eq
58 becomes constant:

lim
q30

�eff�q� � lim
q30

��q� � ��0� � �A�1 � �A�

� �DANA�1 � �A� � DBNB�A�
�0

kBT (63)

In reality, as shown in Figure 25, R(q)/q2 nonlin-
early decreases with q2, rather than linearly in-
creasing; that is, the R(q)/q2 values are more sup-
pressed than expected from the linear relation-

ship [as shown by solid lines with �eff(q) � �(0)],
even at q2 values much smaller than 1/Rg

2 (2.27
� 10�3 nm�2 for DPB and 1.11 � 10�2 nm�2 for
PI).19 This means that the Onsager kinetic coef-
ficient must have a strong q dependence for some
reason, so that R(q) is strongly suppressed even in
the q range of qRg 
 1. The larger q is, the larger
the suppression degree is.

The q dependence of the Onsager kinetic coef-
ficient [�eff(q)] can be estimated from the mea-
sured values of R(q)/q2 and the known static
quantities with eqs 61 and 62. The results19 are
plotted in Figure 26, together with theoretical
predictions given by Pincus7 for dynamically sym-
metric mixtures and by the Doi–Onuiki (DO) the-
ory.12–14 The experimental value of �eff(q) is very
much suppressed from the constant level of �(0),
as we expected from the results shown in Figure
25.

Pincus-deGennes derived the q dependence of
the Onsager kinetic coefficient for dynamically
symmetric entangled polymer mixtures in the
melt with reptation dynamics:3,4

��q� � ��0�
1 � exp��q2R�

2 �

q2R�
2 (64)

where the characteristic length R� in this theory
is Rg of the polymers themselves. Although the
Pincus theory cannot be applied to our systems,

Figure 25. R(q)/q2 plotted against q for a DPB/PI
blend at 309.0 and 298.1 K. The solid lines represent
�(q) � �(0) � (5.34 � 0.74) � 10�22 at 298.1 K and �(q)
� �(0) � (10.3 � 0.6) � 10�21 at 309.0 K, and the
broken line are visual guides (from ref. 19).

Figure 26. q dependence of �(q) at 309.0 and 298.1 K
for a DPB/PI blend. The solid lines indicate the fitting
results from the DO theory (eqs 58 and 63), with the
�(0) and �ve values given in the text, whereas the
broken lines indicate the prediction of the Pincus the-
ory for the symmetric mixtures, with �(0) given in the
text and Rg values of 9.5 and 21 nm, free from viscoelas-
tic effects (from ref. 19).

DYNAMICS AND HIERARCHICAL PATTERN FORMATION 3053



we have attempted to elucidate qualitatively the
significance of the result of eq 64 for the interpre-
tation of the experimental results. For the exper-
iment at 309.0 K, if we assume R� � Rg � 9.5 nm
for both PI and DPB, we obtain the prediction
given by the top dotted line. On the other hand, if
we assume R� � Rg � 21.0 nm for both PI and
DPB, we obtain the prediction given by the second
dotted line from the top. In this case, �(q) is given
by q�2 at qRg � 1, as is clear from eq 64. The same
applies to the experiment at 298.1 K. It is clarified
that for both cases �(q) derived for symmetric
mixtures undergoing reptation dynamics cannot
explain the large suppression of �eff(q) from �(0).
The large suppression experimentally found must
be explained by factors other than the reptation
dynamics.

Because it is clarified that �(q) given by eq 64
is approximately constant over the q range in
which the suppression is observed, we assume
that �(q) in eq 64 is a constant given by eq 63 for
further analyses of �eff(q). We fit the experimen-
tal results of �eff(q) with eq 58 under the assump-
tion of �(q) being equal to �(0) given by eq 63 and
with �ve as an adjustable parameter. The best
fitting results are displayed by the solid lines in
Figure 26. The DO theory can well predict the
experimental results for �eff(q). The estimated
�(0) and �ve values are (6.39 � 1.4) � 10�22 m5

J�1 s�1 and 64.6 � 12.6 nm, respectively, at 298.1
K and (14.1 � 1.7) � 10�22 m5 J�1 s�1 and 76.9
� 7.1 nm, respectively, at 309.0 K. �ve is much
lager than Rg of DPB and PI, and this shows that
the viscoelastic effects play a dominant role in the
observed q dependence of the Onsager kinetic co-
efficient. The effects suppress the transport coef-
ficient even at qRg � 1 as �ve is large.

In contrast, the Pincus theory predicts the sup-
pression of the kinetic coefficient only at q � 1/Rg,
as he expected. This is natural and reasonable
because, when the component polymers are sym-
metric, �a goes to zero and hence �ve goes to zero;
this results in a complete screening of the vis-
coelastic effects. Thus, the suppression of the ki-
netic coefficient occurs only through the q depen-
dence of the reptation modes. In other words, the
physical origin of the suppression is completely
different. In our asymmetric mixtures, the sup-
pression of �(q) at 1/�ve 
 q 
 1/Rg reflects the
viscoelastic effect, although that at q � 1/Rg

would be affected by the q dependence of the
reptation modes as well. The �ve values estimated
here are consistent with values independently

measured by other methods, as detailed else-
where.19

Further Comments on the Viscoelastic Effects

How do the viscoelastic effects affect pattern for-
mation in the phase-separation process? Figure
27 presents unique phase-separating structures
observed under transmission light microscopy for
an aqueous solution of poly(vinyl methyl ether).61

The series of images shows an isothermal time
evolution of the structures in the late stage of SD.
In this experiment the solution was quenched
deeply to a particular temperature (310.3 K, well
above Tg) in the spinodal region. The bright phase
corresponds to the solvent-rich phase, and the
dark phase corresponds to the polymer-rich
phase. The two phases form a cocontinuous pat-
tern in which the minority phase of the polymers
form continuous network structures in 3D space
[Fig. 27(a,b)]. As the networks grow, driven by a
thermodynamic force, networks are locally bro-
ken and lose their continuity with time [Fig.
27(c,d)], eventually collapsing into droplets rich
in polymer. The droplets are coarsened through
diffusion and coalescence, although the growth
process of droplets in the hydrodynamic regime is
not presented in Figure 27.

The cocontinuous structure shown in Figure 27
for the asymmetric system is quite different from
that shown in Figure 11 for the symmetric mix-
tures, which are characterized by a smooth, hy-
perbolic interface, as more clearly highlighted in

Figure 27. Unique phase-separation structures ob-
served for an aqueous solution of poly(vinyl methyl
ether) under transmission light microscopy. Parts a–d
were observed 1, 1.4, 3, and 30 s after phase separation
at 310.3 K. The scale bar represents 200 �m (from ref.
61).
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Figure 28 for a PB/SBR50 mixture approximately
satisfying dynamic symmetry. The figure repre-
sents the interface of the 3D phase-separated
structure in the late stage of SD. The 3D image of
the interface was constructed from a series of
sliced images obtained by LSCM. The image
shows the phase-separated structure over approx-
imately one characteristic length �m. One side of
the interface is colored red, providing space avail-
able for one component in the mixture, and the
other side is colored green, providing space avail-
able for the other component. The two domains
are cocontinuous in 3D space, and the interface is
essentially characterized by a smooth, hyperbolic
interface with a negative Gaussian curvature.

The network structure in Figure 27(a,b) con-
sists of threads between the network junction
points. If the threads consist of a viscous liquid,
the interface is expected to be smooth and the
threads are expected to have a more uniform di-
ameter than in Figure 27. However, the threads
in Figure 27 do not show smooth and uniform
characteristics, and this is believed to be a result
of the threads consisting of the viscoelastic solu-
tions of entangled polymers. The entangled poly-
mer chains in the threads are pulled apart during

the growth process of the threads. The local stress
built up by the elastic effects and its stress relax-
ation due to viscous flow via the disentangle-
ments and/or squeezing of solvents from the
threads cause local thinning and thickening of
threads, hence developing nonuniformity for the
thread diameter and an irregular appearance for
the interface. The viscoelastic interactions of the
threads appear to extend over a quite long range,
involving intrathread and interthread interac-
tions. The viscoelastic length may characterize
this interaction range. The pattern formation and
growth may involve solvent squeezing from the
threads, which are domains rich in polymers, as a
result of dynamic asymmetry and take a nonequi-
librium pathway, along which the stored elastic
energy is dissipated most efficiently.

Cocontinuous phase-separating structures for
symmetric mixtures grow with dynamic self-sim-
ilarity. On the other hand, the dynamically asym-
metric system does not seem to strictly obey this
rule; a violation of this growth rule seems to be
obvious in the later time of the late stage, as
shown in Figure 27(c,d), as the system eventually
is transformed into a cluster of droplets rich in
the polymer in the matrix rich in water.

The patterns shown in Figure 27 are those in a
very late stage SD and hence have �m in the
range between 20 and 200 �m, almost macro-
scopic sizes. What kind of phase-separation pro-
cesses can we imagine in the stage earlier than
the stage shown in Figure 27 for dynamically
asymmetric systems? The processes have been
essentially left unexplored despite physical sig-
nificances. The processes, dynamics, and patterns
in this stage can be best studied with the time-
resolved scattering methods. The suppression of
the growth rate of q Fourier modes of the fluctu-
ations with q satisfying q�ve � 1 is anticipated to
give a unique time evolution of the scattering
profiles I(q,t). Figure 29 shows a typical example
for the time evolution of LS profiles for a dynam-
ically asymmetric system in the early stage of SD
[Fig. 29(a)] and in the later stages [the interme-
diate and late stages; Fig. 29(b)].18 The system
investigated here is a 6.0 wt % solution of high-
molecular-weight polystyrene (PS; Mw � 5.48
� 106, Mw/Mn � 1.15) in dioctyl phthalate (DOP).
This concentration was 6.7 times higher than the
overlap concentrations of polymer coils,3 so the
PS chains were highly entangled. The solution
had a cloud temperature (Tcl) of 13.8 °C and was
quenched below Tcl by �T  Tcl � T � 3 and 1.5
°C from 20 °C, well above Tcl.

Figure 28. 3D real-space structure of the interface of
a PB/SBR mixture developed in the late stage of SD
and constructed from LSCM. One side of the interface
is colored red, and the other side is green. The mixture
approximately satisfies dynamic symmetry, and the
interface has a smooth, hyperbolic characteristic with a
negative Gaussian curvature (from ref. 50).
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As shown in Figure 29(a), in the early stage of
SD, the LS profile shows a very broad scattering
maximum, so broad that the maximum is less
distinct than that for typical symmetric mixtures
(see Fig. 1445 and other cases62,63), although the
time evolution is well characterized by the CHC
theory. This is because �ve for this system is 1.04
� 103 nm, as discussed later, and so growth rate
R(q) is suppressed for all q’s covered in Figure 29
because of the viscoelastic effect, but the degree of
the suppression of the rate increases with in-
creasing q. R(q) is small but is less suppressed for
the small q modes of q � 10�3 nm�1, whereas it is
high but more suppressed for the large q modes of
q � 8 � 10�3 nm�1; this gives rise to the observed
broadening of the scattering maximum. The time
evolution in I(q,t) in the later stage shown in
Figure 29(b) is more unique than in the early
stage. Because of the aforementioned viscoelastic
effect on R(q), the Fourier modes with small q

values grow more quickly than those with large q
values, and so the scattering maximum becomes
less distinct with time. This time evolution in
I(q,t) is quite different from that found for dynam-
ically symmetric systems [see Figs. 5 (upper half),
9, and 14], which follow dynamic self-similarity.
Apparently, dynamic self-similarity is not ful-
filled in dynamically asymmetric systems: the
scaled structure factor F(x) is not universal with t.
This trend is clearly shown in Figure 27 as well,
in which the distribution of the mesh size of the
networks becomes broader with time or structure
units with larger length scales become more re-
markable with time.

The analysis of I(q,t) in the early stage of SD
shown in Figure 29(a) with the CHC linearized
theory yields R(q) (Fig. 30) and �eff(q) (Fig. 31).18

The solid lines in Figure 30 and the solid line and
dashed–dotted line in Figure 31 were theoreti-
cally predicted with �ve � 1.04 � 103 nm at 10.8
°C and 9.5 � 102 nm at 12.3 °C, whereas the two
broken lines in Figure 30 and the broken horizon-
tal line in Figure 31 indicate the corresponding
curves for �ve � 0. A comparison of the experimen-
tal results with those calculated for �ve � 0 shows
that the viscoelastic effect strongly suppresses
�eff(q) and hence R(q) for all the q modes, includ-
ing those with qRg 
 1, Rg � 63 nm, covered in
this work and that a degree of the suppression
increases with q, simply because �ve is quite large
(�ve/Rg � 14). The viscoelastic effect reduces the
wave number qm(0) of the dominant Fourier
modes having a maximum growth rate in the
early stage of SD by a factor of about 4, from
about 8 � 10�3 nm�1 for �ve � 0 to about 2 � 10�3

nm�1 in the real system. The effect also yields a
strong downward curvature18 for the Cahn plot of
R(q)/q2 versus q2 (which is not shown here), in
comparison with the case of �ve � 0, which pre-
dicts linear decay.

Figure 32 shows the pattern formation of
aqueous dispersions of ionic colloids as observed
by LSCM.64 We carefully matched the density of
the colloidal particles with that of the medium
by mixing H2O and D2O in an appropriate ratio
to avoid gravitational effects. The concentration
of the colloid was 0.1 vol %, and the salt con-
centration was 2 � 4 � 10�6 M. The colloid had
a diameter of 0.12 �m and an effective surface
charge of 1400 e. The LSCM images show sliced
images with a depth resolution of 0.5 �m at a
scan time of 1.0 s. The top two images were
obtained right after the homogenization of the
dispersion via vigorous shaking of the cell en-

Figure 29. Changes in the LS profiles with time dur-
ing (a) an early stage and (b) a later stage of the
phase-separation process of PS/DOP via SD after the
quench from 20.0 to 10.8 °C. �T is the quench depth
from the cloud-point temperature (13.8 °C; from ref.
18).
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closing the sample, whereas the bottom two im-
ages were observed 2 months after homogeniza-
tion. The left and right halves correspond to

lower and higher magnifications, respectively.
The bright dots are individual particles with a
short-range liquidlike order (termed disordered

Figure 30. Semilogarithmic plots of R(q) versus q for PS/DOP. The solid lines indicate
the values of R(q) calculated with eqs 57–59 and eq 63 with �ve � 1.04 � 103 nm at 10.8
°C and �ve � 9.5 � 102 nm at 12.3 °C, whereas the two broken lines indicate the
corresponding curves of R(q) for �ve � 0 (from ref. 18).

Figure 31. �eff(q)/�(0) plotted as a function of q for PS/DOP. The solid line indicates
1/(1 � q2�ve

2 ) with �ve � 1.04 � 103 nm at 10.8 °C and �ve � 9.5 � 102 nm at 12.3 °C,
whereas the horizontal broken line represents the case with �ve � 0 (from ref. 18).
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particles in the figure), and the dark domains
are voids free of particles.

The same void structures can be observed every-
where in the dispersion, as shown in Figure 33 by a
series of images taken in the same area but with
systematic changes in the slicing position along the
incident beam from the bottom of the cell. The void
size (�30 �m in diameter) is the same everywhere
as well. These facts imply that the patterns were
formed not by gravitational effects but rather by
electrostatic interactions among the particles in the
medium, which seems to be effectively attractive.
Actually, the voids appearing in the sliced images
are not isolated but are rather cocontinuous with
the particle-rich region, as is self-evident if we trace
the series of images shown in Figure 33. Although
the particles are very dilute, they still form domains
rich in particles that are continuous in 3D space.
The pattern is quite analogous to that formed in the
semidilute polymer solution shown in Figure
27(a,b).

The colloidal particles are effectively intercon-
nected by long-range electrostatic interactions
with a characteristic time for their spatial rear-
rangements (	colloid), as the polymers are inter-
connected by entanglement couplings with a char-
acteristic time (	rept). As a result, the concentra-

tion fluctuations of the particles or polymers
induced in these systems by thermal activation
build up local stress. This stress is bared only by
the particles or the polymers because of dynamic
asymmetry. Thus, a stress imbalance commonly
occurs for both systems. The built-up local elastic
energy will be dissipated via spatial rearrange-
ments of particles or polymers, and this in turn
affects the evolution of the patterns. Thus, the
void formation in the colloidal dispersions may be
explored from a viewpoint of phase separation
involving stress–diffusion coupling and viscoelas-
tic effects and deserves future research.

The suppressed relaxation rate of thermal con-
centration fluctuations [R(q)] makes the dynami-
cally asymmetric systems in a single-phase state
very sensitive to shear flow. If the shear rate �̇ is
smaller than R(q), the q Fourier modes of the
concentration fluctuations decay or relax before
the shear deforms them. When �̇ 
 R(qm), is less
than R(qm), the maximum relaxation rate, the
thermodynamic state of the systems is unaltered.
However, when �̇ is greater than R(qm), the shear
flow affects the concentration fluctuations and
hence the state of the systems. Because R(qm) is
very much suppressed, even a very small �̇ value
is sufficient to affect the system state.

Semidilute polymer solutions in a single-phase
state become turbid under shear flow with �̇ � �̇c,

Figure 33. Series of LSCM images taken in the same
area with a change in the slicing position from the
bottom of the cell along the beam direction for the same
dispersions shown in Figure 32.: (a) 34, (b) 40, (c) 47,
and (d) 53 �m.

Figure 32. Pattern formation in dilute aqueous dis-
persions of ionic colloids as observed by LSCM (Data
are based on ref. 64).
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greater than the critical shear rate.65–67 This in-
triguing phenomenon of shear-induced turbidity
has been explored by in situ, real-time observa-
tions with SANS,68,69 LS,70–72 and optical micros-
copy.73,74 Above �̇c, we find shear-rate-dependent
dissipative structures (ordered patterns devel-
oped in open, nonequilibrium systems) and strong
butterfly-type scattering patterns, although be-
low �̇c the solutions are homogeneous, and no
strong scattering can be observed. Figure 34 pre-
sents butterfly-type SANS and small-angle light
scattering (SALS) patterns69 observed for the
same semidilute PS/DOP solutions discussed pre-
viously in conjunction with Figures 29–31. The
patterns are observed in the qz–qx plane, qx being
q along the flow direction and qz being q along the
neutral (or vorticity) direction. The velocity gra-
dient exists along the qy direction. In the quies-
cent state of �̇ � 0 s�1, both the SALS and SANS
patterns are isotropic, and their intensities are

weak (the patterns are not shown in the figure).
At �̇ � 0.1 s�1, there is no change in the shape or
intensity, and the flow does not affect the SALS
and SANS patterns or, therefore, the concentra-
tion fluctuations.

At �̇ � 0.2 s�1, only the SANS pattern observed
at the sample-to-detector distance of L � 35.7 m
(6.76 � 10�3 � q � 6.00 � 10�2 nm�1) shows an
anisotropic pattern with a strong intensity along
the qx direction, which is called a butterfly pat-
tern,70 and without any change in the qz direc-
tion, which is called a dark streak in the butterfly
pattern.70 This indicates that large amplitude
concentration fluctuations develop only along the
flow direction in the q range covered. In larger
(2.51 � 10�2 � q � 8.0 � 10�1 nm�1) and smaller
q regions (6.27 � 10�4 � q � 3.63 � 10�3 nm�1)
covered by SANS with L � 10 m and by SALS,
respectively, the shapes and intensities are al-
most the same as those in quiescent solution, and

Figure 34. Steady-state SALS and SANS patterns obtained at shear rates of 0.1–2.6
s�1 at a given temperature of 22 °C. SANS patterns obtained at different sample-to-
detector distances (L � 35.7 or 10 m) are presented. The color bars for the scattering
intensity are shown on a logarithmic scale. The values attached to the color bars
(absolute units in SANS and arbitrary units in SALS) are the upper and lower limits
(from 102.8 to 105.0 arbitrary units for SALS and from 100 to 103.0 cm�1 for SANS) of the
color histograms. The scale bars attached to the SANS patterns indicate a q scale of
5.63 � 10�2 nm�1 for 35.7 m and 2.00 � 10�1 nm�1 for 10 m, whereas the scale bar
attached to the SALS pattern indicates a q scale of 3.63 � 10�3 nm�1. Based upon ref.
69.
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this shows that the structures are not much af-
fected by the shear flow in the two corresponding
q ranges.

At �̇ � 0.4 s�1, the SALS pattern also begins to
exhibit the butterfly pattern, revealing that the
concentration fluctuations expand to larger
length scales. At higher �̇ values of 1 and 2.6 s�1,
both the SALS pattern and the SANS pattern
with L � 35.7 m evolve into butterfly patterns in
such a way that the scattering intensity along qx
increases and the butterfly wings expand; this
results in a narrowing of the dark streak along
the qz direction. On the contrary, the SANS pat-
terns obtained at L values of 10 and 2.5 m (which
are not shown in the figure) remain equal to those
in the quiescent state, showing that the Fourier
modes of the concentration fluctuations in this q
region (2.51 � 10�2 � q � 7.75 � 10�1 nm�1) are
not enhanced at these values of �̇.

The butterfly scattering arises from the shear-
induced concentration fluctuations that are built
up in the systems against the osmotic pressure.
Under the shear flow with �̇ � �̇c, elastic energy
stored by the deformed, swollen, entangled net-
work chains cannot be relaxed via disentangle-
ments because �̇ is larger than the disentangle-
ment rate. Thus, the relaxation involves the
squeezing of solvents from the swollen entan-
gled networks of polymer chains. Regions rich
in polymers are deformed more and hence
squeeze solvents more than the regions poor in
polymer. Thus, local concentration fluctuations
are built up to result in the formation of shear-
induced dissipative structures, as observed by
the butterfly patterns. The shear-induced struc-
tures driven by the viscoelastic effects have
been studied under continuous shear flow,70 –75

under oscillatory shear flow,74,76 –78 and as a
function of the solvent quality,79 molecular
weight,70 concentration,70,80 and so forth. The-
ories of shear-induced fluctuations were pio-
neered by Helfand and Fredickson81 and elabo-
rated by Onuki.12

Summary

We have presented time-resolved SANS and LS
studies of the dynamics of the composition (or
concentration) fluctuations and pattern forma-
tion for dynamically asymmetric systems in
which the components in the systems have dif-
ferent self-diffusion coefficients. The systems
are polymer mixtures, polymer solutions, and
aqueous dispersions of ionic colloidal particles.

We have discussed the stress– diffusion cou-
pling and viscoelastic relaxations, which are
irrelevant to dynamically symmetric systems
but play important roles in the dynamics and
pattern formation of these systems.

The relaxation or growth rate of the fluctua-
tions [R(q)] is suppressed for the Fourier modes
with q satisfying q�ve � 1, where �ve is a screening
length for the viscoelastic effect called the vis-
coelastic length: �ve can be much larger than Rg’s
of the component polymer(s). The pattern forma-
tion in the two-phase region initially involves the
formation of a percolated networklike structure
rich in dynamically slow-component units in a
matrix rich in fast-component units, as a result of
squeezing fast-component units from regions rich
in slow-component units. The networklike struc-
tures have a rough interface and a large distribu-
tion in the mesh size (or network periodicity) as a
result of the viscoelastic effects on the growth
process. Their growth process does not obey dy-
namic self-similarity, as found for dynamically
symmetric systems. Accordingly, the time evolu-
tion of the scattering functions is very different in
these two systems. However, we expect that the
two systems behave similarly in the long time
limit for which t � 	ve � �ve

2 /D (D is the mutual
diffusion coefficient) is true and hydrodynamic
interactions dominate the dynamics.

We have briefly pointed out that dynamically
asymmetric systems are unique also in their
shear-induced structure formation, which causes
shear-induced butterfly type scattering patterns,
again because of the viscoelastic effects. Finally,
we stress that polymers provide good model sys-
tems for dynamically asymmetric systems as well
because we can easily tune the asymmetry pa-
rameter with respect to the molecular weights of
polymers and the frictional characteristics of
monomer units and because their spatiotemporal
scales are quite appropriate for experimental in-
vestigations.
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